Independence preserving property and integrable systems

Makiko Sasada

University of Tokyo

Mini-courses in GSSI trimester Day 4 @GSSI Based on joint works with D.Croydon and R. Uozumi Does the independence preserving property (IP property) have anything to do with the integrability?

Motivation:

- The IP property is quite fundamental and classical, but still not well understood. Relations to the integrability may be useful.
- The IP property may give a new and universal perspective for the relation between various deterministic/stochastic integrable systems.
- The IP property may be useful to find a new integrable model (or a new Yang-Baxter map).

Let
$$F(x, y) = (x + y, x - y) : \mathbb{R}^2 \to \mathbb{R}^2$$
.

Kac-Bernstein theorem (1939,1941)

Suppose X, Y are two independent non-constant random variables and (U, V) := F(X, Y) are also independent. Then, there exists $a, b \in \mathbb{R}$ and $\sigma > 0$ such that $X \sim N(a, \sigma)$, $Y \sim N(b, \sigma)$, where $N(a, \sigma)$ is the normal distribution with mean a and variance σ .

Let
$$F(x, y) = (x + y, x - y) : \mathbb{R}^2 \to \mathbb{R}^2$$
.

Kac-Bernstein theorem (1939,1941)

Suppose X, Y are two independent non-constant random variables and (U, V) := F(X, Y) are also independent. Then, there exists $a, b \in \mathbb{R}$ and $\sigma > 0$ such that $X \sim N(a, \sigma)$, $Y \sim N(b, \sigma)$, where $N(a, \sigma)$ is the normal distribution with mean a and variance σ .

There are a number of applications of this result in physics, statistics, There are many generalizations of the result in various directions.

2 Classical integrable systems

3 Stochastic integrable models

4 Yang-Baxter map

2 Classical integrable systems

3 Stochastic integrable models

Yang-Baxter map

- $\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}_1, \mathcal{Y}_2$: measurable spaces
- $F : \mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{Y}_2$: measurable bijection
- *F* has an independence preserving property (IP property) if there exists a quadruplet of non-dirac probability measures $(\mu, \nu, \tilde{\mu}, \tilde{\nu})$ (on $\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}_1$ and \mathcal{Y}_2 respectively) satisfying $F(\mu \times \nu) = \tilde{\mu} \times \tilde{\nu}$.
- In other words, there exist non-constant independent random variables X, Y such that U, V are also independent where (U, V) = F(X, Y)

- $\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}_1, \mathcal{Y}_2$: measurable spaces
- $F : \mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{Y}_2$: measurable bijection
- *F* has an independence preserving property (IP property) if there exists a quadruplet of non-dirac probability measures $(\mu, \nu, \tilde{\mu}, \tilde{\nu})$ (on $\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}_1$ and \mathcal{Y}_2 respectively) satisfying $F(\mu \times \nu) = \tilde{\mu} \times \tilde{\nu}$.
- In other words, there exist non-constant independent random variables X, Y such that U, V are also independent where (U, V) = F(X, Y)

Basic question

For which *F*, the independence preserving property holds? For such *F*, can we characterize all solutions $(\mu, \nu, \tilde{\mu}, \tilde{\nu})$ for $F(\mu \times \nu) = \tilde{\mu} \times \tilde{\nu}$?

* For F(x, y) = (f(x), g(y)) or F(x, y) = (f(y), g(x)), F trivially has the IP property. Also, any coordinate-wise change of variables do not change the property, as well as $F \to F^{-1}$ and $F \to F \circ \pi$ where $\pi(x, y) = (y, x)$. These induce a natural equivalence relation in the class of functions F.

Known results

- $F_{N} : \mathbb{R}^{2} \to \mathbb{R}^{2} : F_{N}(x, y) = (x + y, x y) :$ Normal distribution (Kac 1939, Bernstein 1941), $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (N(a, c), N(b, c), N(a + b, 2c), N(a - b, 2c))$
- $F_{\text{Ga}} : \mathbb{R}^2_+ \to \mathbb{R}^2_+ : F_{\text{Ga}}(x, y) = \left(x + y, \frac{x}{y}\right) :$ Gamma distribution (Lukacs, 1955) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (\text{Ga}(a, c), \text{Ga}(b, c), \text{Ga}(a + b, c), \text{Be}'(a, b))$
- $F_{\text{Exp}} : \mathbb{R}^2 \to \mathbb{R}^2 : F_{\text{Exp}}(x, y) = (\min\{x, y\}, x y) :$ Exponential /Geometric distribution (Ferguson, 1965, Crawford, 1966) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (\operatorname{sExp}(a, c), \operatorname{sExp}(b, c), \operatorname{sExp}(a + b, c), \operatorname{AL}(a, b)), \text{ or}$
 - $(\mathrm{ssGeo}(p,M,m),\mathrm{ssGeo}(q,M,m),\mathrm{ssGeo}(pq,M,m),\mathrm{sdAL}(\mathrm{p},\mathrm{q},\mathrm{m}))$

 $F_{\rm Exp}$ is a zero-temperature version (= a tropicalization, an ultra-discretization) of $F_{\rm Ga}$, namely (+, ×)-algebra is replaced by (min, +)-algebra.

Known results

• $F_{\text{GIG-Ga}}: \mathbb{R}^2_+ \to \mathbb{R}^2_+: F_{\text{GIG-Ga}}(x, y) = \left(\frac{1}{x+y}, \frac{1}{x} - \frac{1}{x+y}\right):$ Generalized inverse gaussian distribution (Matsumoto-Yor 2001(if part), Letac-Wesolowski 2000 (only if part)) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (\operatorname{GIG}(a, b, c), \operatorname{Ga}(a, b), \operatorname{GIG}(a, c, b), \operatorname{Ga}(a, c))$ • $F_{ ext{Be}}: (0,1)^2 o (0,1)^2: F_{ ext{Be}}(x,y) = \left(\frac{1-x}{1-xy}, 1-xy\right):$ Beta distribution (Seshadri-Wesolowski 2003) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (\operatorname{Be}(a, b), \operatorname{Be}(a + b, c), \operatorname{Be}(c, b), \operatorname{Be}(c + b, a))$ • $F_{\mathrm{K-Ga},\mathrm{A}}:\mathbb{R}^2_+ \to \mathbb{R}_+ imes (0,1): \ F_{\mathrm{K-Ga},\mathrm{A}}(x,y) = \left(x+y, rac{1+rac{1}{x+y}}{1+rac{1}{z}}\right):$ Kummer distribution (Koudou-Vallois 2012, Piliszek and Wesolowski 2018) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (K^{(2)}(a, b, c), Ga(b, c), K^{(2)}(a + b, -b, c), Be(a, b))$

Known results

• $F_{\text{GIG-Ga}}: \mathbb{R}^2_+ \to \mathbb{R}^2_+: F_{\text{GIG-Ga}}(x, y) = \left(\frac{1}{x+v}, \frac{1}{x} - \frac{1}{x+v}\right):$ Generalized inverse gaussian distribution (Matsumoto-Yor 2001(if part), Letac-Wesolowski 2000 (only if part)) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (\operatorname{GIG}(a, b, c), \operatorname{Ga}(a, b), \operatorname{GIG}(a, c, b), \operatorname{Ga}(a, c))$ • $F_{ ext{Be}}: (0,1)^2 o (0,1)^2: F_{ ext{Be}}(x,y) = \left(\frac{1-x}{1-xy}, 1-xy\right):$ Beta distribution (Seshadri-Wesolowski 2003) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (\operatorname{Be}(a, b), \operatorname{Be}(a + b, c), \operatorname{Be}(c, b), \operatorname{Be}(c + b, a))$ • $F_{\mathrm{K-Ga,A}}: \mathbb{R}^2_+ \to \mathbb{R}_+ \times (0,1): F_{\mathrm{K-Ga,A}}(x,y) = \left(x+y, \frac{1+\frac{1}{x+y}}{1+\frac{1}{x}}\right):$ Kummer distribution (Koudou-Vallois 2012, Piliszek and Wesolowski 2018) $(\mu, \nu, \tilde{\mu}, \tilde{\nu}) = (K^{(2)}(a, b, c), Ga(b, c), K^{(2)}(a + b, -b, c), Be(a, b))$ • $F_{\text{Be}}^{\delta}(x,y) = \left(\frac{1-xy}{1+(\delta-1)xy}, \frac{1-x}{1+(\delta-1)x}\frac{1+(\delta-1)xy}{1-xy}\right)$ for $\delta > 0$ • $F_{\mathrm{K-Ga},B}(x,y) = \left(\frac{y}{1+x}, \frac{x(1+x+y)}{1+x}\right)$

Remarks

- For F_{Ga}, F_{GIG-Ga}, F_{Be}, F_{K-Ga,A}, the positive symmetric n × n matrix versions also exist. Namely, F : Symⁿ₊ × Symⁿ₊ → Symⁿ₊ × Symⁿ₊. Some cases are even generalized to symmetric cones.
- They (including their generalized versions) are all known examples before we found new classes of examples originated from integrable systems.
- The results for F_{Ga} and F_{Be} were keys of the characterization of stationary 1 + 1 dimensional lattice polymer models (Chaumont-Noack, 2017)
- All continuous examples have solutions with exactly three parameters, but there was no explanation for this coincidence.
- Free probability analogues for F_N (Nica 1996), F_{Ga} (K. Szpojankowski, 2015), F_{GIG-Ga} (K. Szpojankowski, 2017) are also known.

• Q : For which F, the independence preserving property holds?

Theorem (Koudou and Vallois (2012))

Suppose $f : \mathbb{R}_+ \to \mathbb{R}_+$ is a regular decreasing bijection and let $F : \mathbb{R}^2_+ \to \mathbb{R}^2_+$ be F(x, y) = (f(x + y), f(x) - f(x + y)) (called Matsumoto-Yor type). If F has the IP property with distributions having regular densities, then $F = F_{\text{GIG-Ga}}, F_{\text{Be}}^{\delta}$ or $F_{\text{K-Ga,A}}$ up to the natural equivalence.

• Other than this result, nothing was studied in a unified way. Just specific examples were known.

- Q : For such F, can we characterize all solutions $(\mu, \nu, \tilde{\mu}, \tilde{\nu})$ for $F(\mu \times \nu) = \tilde{\mu} \times \tilde{\nu}$?
- A : Most of known examples where X₁, X₂, Y₁ and Y₂ are an open interval of ℝ and the function F is smooth, the complete characterization has been obtained. For other general cases, such as X₁, X₂, Y₁ and Y₂ are space of positive definite symmetric matrices, or the function F includes min function (zero-temperature version), the characterization becomes more complicated, and less are known.

Zero-temperature (ultra-discrete) version

- Except $F_{\rm N}$ and $F_{\rm Exp}$ (= zero-temp. version of $F_{\rm Ga}$), all known examples have zero-temp. version, which have IP property too.
- Applying the zero-temp. version, we find a new stationary 1 + 1 dimensional lattice "zero-temperature" polymer model

Subtraction-free expressions as $F : \mathbb{R}^2_+ \to \mathbb{R}^2_+$

If $\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}_1, \mathcal{Y}_2$ are open intervals of \mathbb{R} , by a coordinate-wise change of variables, we can change the domains and codomains of F to \mathbb{R}^2_+ . In particular, we have the following normalized expressions, and so can take the zero-temp. limit for all!

•
$$F_{\text{Ga}}^{+}(x,y) = F_{\text{Ga}}(x,y) = \left(x+y,\frac{x}{y}\right), \ (F_{\text{Ga}}^{+})^{-1}(x,y) = \left(\frac{xy}{1+y},\frac{x}{1+y}\right)$$

• $F_{\text{Be}}^{+,\delta}(x,y) = \left(\frac{1+x+y}{\delta xy}, \frac{1+x+y+\delta xy}{x(\delta+\delta x)}\right)$
• $F_{\text{K-Ga},\mathcal{A}}^{+}(x,y) = \left(x+y,\frac{x(x+y+1)}{y}\right), \ (F_{\text{K-Ga},\mathcal{A}}^{+})^{-1}(x,y) = \left(\frac{xy}{1+x+y},\frac{x(1+x)}{1+x+y}\right)$
• $F_{\text{K-Ga},\mathcal{B}}^{+}(x,y) = F_{\text{K-Ga},\mathcal{B}}(x,y) = \left(\frac{y}{1+x},\frac{x(1+x+y)}{1+x}\right)$
• $F_{\text{Be}}^{+}(x,y) = F_{\text{Be}}^{+,1}(x,y) = \left(\frac{1+x+y}{xy}, \frac{1+y}{x}\right)$
• $F_{\text{GIG-Ga}}^{+} = \left(\frac{y}{1+xy}, x(1+xy)\right)$

New examples having the IP property

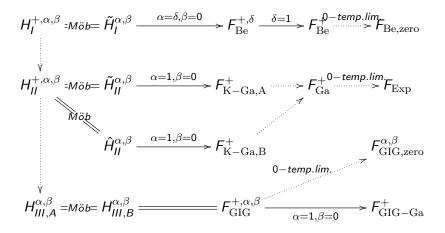
- Studying invariant measures of the discrete modified KdV equation, we find a new class of functions $F_{\text{GIG}}^{\alpha,\beta}(x,y) = \left(y \frac{1+\beta xy}{1+\alpha xy}, \ x \frac{1+\alpha xy}{1+\beta xy}\right) : \mathbb{R}^2_+ \to \mathbb{R}^2_+ \text{ where } \alpha, \beta \ge 0 \text{ having the IP property. The class was known as an example of Yang-Baxter maps.}$
- In a class of Yang-Baxter maps on ℝ²₊, we find new classes of functions H^{+,α,β}_I, H^{+,α,β}_{II} where α, β ≥ 0, having the IP property. (S-Uozumi, 2022)

New examples having the IP property

- Studying invariant measures of the discrete modified KdV equation, we find a new class of functions $F_{\text{GIG}}^{\alpha,\beta}(x,y) = \left(y \frac{1+\beta xy}{1+\alpha xy}, \ x \frac{1+\alpha xy}{1+\beta xy}\right) : \mathbb{R}^2_+ \to \mathbb{R}^2_+ \text{ where } \alpha, \beta \ge 0 \text{ having the IP property. The class was known as an example of Yang-Baxter maps.}$
- In a class of Yang-Baxter maps on ℝ²₊, we find new classes of functions H^{+,α,β}_I, H^{+,α,β}_{II} where α, β ≥ 0, having the IP property. (S-Uozumi, 2022)

Relations between bijections having the IP property (S-Uozumi, 2022)

Unified relation between known examples



All known maps except $F_{\rm N}$ are understood in a unified manner!

2 Classical integrable systems

3 Stochastic integrable models

Yang-Baxter map

Discrete KdV equation (1 + 1 dimensional lattice model)

- $n \in \mathbb{Z}$: space variable, $t \in \mathbb{Z}$: time variable
- $0 < \delta < 1$: model parameter, $x_n^t > 0$

Discrete KdV equation :

$$\frac{1}{x_{n+1}^{t+1}} - \frac{1}{x_n^t} = \delta(x_{n+1}^t - x_n^{t+1}).$$

Invariant measures?

How to define the dynamics for a given initial configuration $(x_n^0)_{n \in \mathbb{Z}}$?

Let (formally) $y_n^t := \prod_{m=-\infty}^n \frac{x_m^t}{x_m^{t+1}}$. Then, the relation is rewritten as $F_{dK}^{(\delta)}(x_n^{t+1}, y_n^t) = (x_n^t, y_{n-1}^t)$ where $F_{dK}^{(\delta)}(x, y) = \left(\frac{y}{1+\delta x y}, x(1+\delta x y)\right)$, which is an involution.

1 + 1 dimensional deterministic lattice dynamics

KdV-type locally-defined dynamics

• $\mathcal{X}_0, \mathcal{Y}_0$: sets

•
$$F : \mathcal{X}_0 \times \mathcal{Y}_0 \to \mathcal{X}_0 \times \mathcal{Y}_0$$
 : involution, namely $F = F^{-1}$

•
$$\mathcal{X} := \mathcal{X}_0^{\mathbb{Z}}$$

Initial value problem

For a given initial value $\mathbf{x} = (x_n)_{n \in \mathbb{Z}} \in \mathcal{X}$, $(x_n^t, y_n^t)_{n,t \in \mathbb{Z}}$ is a solution of the initial value problem to the locally-defined dynamics F if

$$\begin{cases} (x_n^{t+1}, y_n^t) = F(x_n^t, y_{n-1}^t) & n, t \in \mathbb{Z} \\ x_n^0 = x_n. \end{cases}$$

If for $\mathbf{x} \in \mathcal{X}$, the solution exists uniquely, then we can define the one-time step dynamics $\mathbf{x} \to T\mathbf{x}$ as $(x_n) \to (x_n^1)$.

 $\mathcal{X}^* := \{ \mathbf{x} \in \mathcal{X} \ : \ \exists ! \text{ solution of the initial value problem for } \mathbf{x} \}.$

Suppose proper measurability related conditions on $\mathcal{X}_0, \mathcal{Y}_0$ and F to study invariant measures.

Theorem (Croydon-S, 2021)

Let μ be a probability measure on \mathcal{X}_0 satisfying $\mu^{\mathbb{Z}}(\mathcal{X}^*) = 1$. Then, $\mu^{\mathbb{Z}} = T\mu^{\mathbb{Z}}$ (i.e. $\mu^{\mathbb{Z}}$ is invariant) $\Leftrightarrow \exists \nu$: a probability measure on \mathcal{Y}_0 such that

$$F(\mu \times \nu) = \mu \times \nu.$$

Moreover, if it is the case, $(x_n^t)_n \sim \mu^{\mathbb{Z}}$ for any $t \in \mathbb{Z}$ and $(y_n^t)_t \sim \nu^{\mathbb{Z}}$ for any $n \in \mathbb{Z}$ when $(x_n^0)_n \sim \mu^{\mathbb{Z}}$. (Burke property)

In particular, if the dynamics has an i.i.d. non-dirac invariant measure, then F must have the IP property.

modified discrete KdV equation

$$\begin{split} F_{\rm mdKdV}^{\alpha,\beta}(x,y) &= \left(\frac{y(1+\beta xy)}{1+\alpha xy},\frac{x(1+\alpha xy)}{1+\beta xy}\right),\\ F_{\rm mdKdV}^{\delta,0} &= F_{\rm dK}^{(\delta)} \end{split}$$

modified ultra-discrete KdV equation

$$F_{\text{mudKdV}}^{J,K}(x,y) = (y - \max\{x + y - J, 0\} + \max\{x + y - K, 0\}, x - \max\{x + y - K, 0\} + \max\{x + y - J, 0\}), F_{\text{mudKdV}}^{L,\infty} = F_{\text{udK}}^{(L)}(x,y) = (\min\{L - x, y\}, x + y - \min\{L - x, y\})$$

Independence preserving property for $F_{\text{mudKdV}}^{J,K}$ and $F_{\text{mdKdV}}^{\alpha,\beta}$

We study the solution of $F_{mdKdV}^{\alpha,\beta}(\mu \times \nu) = \tilde{\mu} \times \tilde{\nu}$ and $F_{mudKdV}^{J,K}(\mu \times \nu) = \tilde{\mu} \times \tilde{\nu}$:

 $F_{mdKdV}^{\alpha,\beta}$ (Croydon-S (if part), 2020, Bao-Noack, 2021, Letac-Wesolowski, 2022 (only if part)) : Generalize inverse Gaussian distribution :

$$\begin{aligned} &(\mu, \nu, \tilde{\mu}, \tilde{\nu}) \\ &= (\operatorname{GIG}(-\lambda, \alpha \boldsymbol{a}, \boldsymbol{b}), \operatorname{GIG}(-\lambda, \beta \boldsymbol{b}, \boldsymbol{a}), \operatorname{GIG}(-\lambda, \alpha \boldsymbol{b}, \boldsymbol{a}), \operatorname{GIG}(-\lambda, \beta \boldsymbol{a}, \boldsymbol{b})) \end{aligned}$$

 $F_{mudKdV}^{J,K}$ (Croydon-S, 2020, Bao-Noack, 2021 (not completely characterized)) : Truncated Exponential / Truncated (<u>bipartite</u>) Geometric distribution

From these results, we obtain i.i.d. invariant measures for ultra-discrete KdV and discrete KdV equation.

- To apply our general theorem, we need to know \mathcal{X}^* . This is not a simple task, but we also have a general strategy where we use generalized Pitman's transform (Croydon-S-Tsujimoto, 2022). We succeed to check that $\mu^{\mathbb{Z}}(\mathcal{X}^*) = 1$ for the discrete KdV, the ultra-discrete KdV and a special class of the modified ultra-discrete KdV, but not for the modified discrete KdV.
- $F_{\rm dKdV}^{(\delta)}$ coincides with $F_{\rm GIG-Ga}$ by a change of variable.
- The dynamics $F_{\text{mudKdV}}^{J,K}$ corresponds to the box-ball system with the box capacity J and the carrier capacity K.
- To understand Generalized Gibbs ensembles (GGE), it is crucial to understand invariant measures of discrete integrable models.
- $F_{\rm mdKdV}^{\alpha,\beta}$ satisfies the Yang-Baxter relation.

Discrete Toda equation (1 + 1 dimensional lattice model)

- $n \in \mathbb{Z}$: space variable, $t \in \mathbb{Z}$: time variable
- $I_n^t > 0, V_n^t > 0$

Discrete Toda equation :

$$\begin{cases} I_n^{t+1} = I_n^t + V_n^t - V_{n-1}^{t+1} \\ V_n^{t+1} = \frac{I_{n+1}^t V_n^t}{I_n^{t+1}} \end{cases}$$

Invariant measures? How to define the dynamics??

Let (formally) $y_n^t := \frac{\prod_{j=-\infty}^n I_j^t}{\prod_{j=-\infty}^{n-1} I_j^{t+1}}$. Then, the relation is rewritten as

$$(I_n^{t+1}, V_n^{t+1}, y_n^t) = F_{\mathrm{dT}}(I_{n+1}^t, V_n^t, y_{n-1}^t)$$

where $F_{dT}(a, b, c) = \left(b + c, \frac{ab}{b+c}, \frac{ac}{b+c}\right)$, which is an involution. F_{dT} is "decomposed" into $F_{dT}^*(x, y) = \left(x + y, \frac{x}{x+y}\right)$ and its inverse.

1+1 dimensional lattice dynamics

Toda-type locally-defined dynamics

• $\mathcal{X}_0, \tilde{\mathcal{X}}_0, \mathcal{Y}_0, \tilde{\mathcal{Y}}_0$: sets

•
$$F^*: \mathcal{X}_0 imes \mathcal{Y}_0 o ilde{\mathcal{X}}_0 imes ilde{\mathcal{Y}}_0$$
 : bijection

•
$$F_{2n} := F^*, \quad F_{2n+1} := (F^*)^{-1}$$

• $\mathcal{X} := (\mathcal{X}_0 \times \tilde{\mathcal{X}}_0)^{\mathbb{Z}}$

Initial value problem

For a given initial value $\mathbf{x} = (x_n)_{n \in \mathbb{Z}} \in \mathcal{X}$, $(x_n^t, y_n^t)_{n,t \in \mathbb{Z}}$ is a solution of the initial value problem to the locally-defined dynamics F if

$$\begin{cases} (x_{n-1}^{t+1}, y_n^t) = F_n(x_n^t, y_{n-1}^t) & n, t \in \mathbb{Z} \\ x_n^0 = x_n. \end{cases}$$

 $\mathcal{X}^* := \{ \textbf{x} \in \mathcal{X} \ : \ \exists ! \text{ solution of the initial value problem for } \textbf{x} \}.$

Suppose proper measurability related conditions.

Theorem (Croydon-S, 2021)

Let $\mu, \tilde{\mu}$ be probability measures on on $\mathcal{X}_0, \tilde{\mathcal{X}}_0$ satisfying $(\mu \times \tilde{\mu})^{\mathbb{Z}}(\mathcal{X}^*) = 1$. Then, $(\mu \times \tilde{\mu})^{\mathbb{Z}} = T(\mu \times \tilde{\mu})^{\mathbb{Z}}$ (i.e. $(\mu \times \tilde{\mu})^{\mathbb{Z}}$ is invariant) $\Leftrightarrow \exists \nu, \tilde{\nu} :$ probability measures on $\mathcal{Y}_0, \tilde{\mathcal{Y}}_0$ such that

$$F(\mu imes
u) = \tilde{\mu} imes \tilde{\nu}.$$

Burke property holds too.

In particular, if the dynamics has an alternate i.i.d. type non-dirac invariant measure, then F^* must have the IP property.

discrete Toda equation

$$F_{\rm dT}^* = F_{\rm Ga}$$

ultra-discrete Toda equation

$$F_{\rm udT}^* = F_{\rm Exp}$$

By the classical characterization results, the alternate i.i.d. type invariant measures for the discrete Toda and the ultra-discrete Toda equations are completely characterized.

2 Classical integrable systems

3 Stochastic integrable models

Yang-Baxter map

(1+1)-dimensional Directed random polymer model with edge weights

Directed random polymer models with edge weights :

- $(X_{n,m})_{n,m\in\mathbb{Z}_+}$: i.i.d. $(0,\infty)$ -valued random variables
- $u: (0,\infty) \to (0,\infty)$ • $v: (0,\infty) \to (0,\infty)$ where $\mathbb{Z}_+ := \{0,1,\dots\}.$

The partition function

$$Z_{n,m} = \sum_{\pi:(0,0)\to(n,m)} \left\{ \prod_{e\in\pi} Y_e \right\}, \qquad \forall n,m\in\mathbb{Z}_+,$$

where the sum is taken over up-right paths $\pi = (e_1, e_2, \dots, e_{n+m})$ from (0,0) to (n,m) on \mathbb{Z}^2_+ , and the edge weights are defined by setting

$$Y_e := \begin{cases} u(X_{k,\ell}), & \text{if } e = ((k-1,\ell), (k,\ell)), \\ v(X_{k,\ell}), & \text{if } e = ((k,\ell-1), (k,\ell)). \end{cases}$$

Directed random polymer model with edge weights

The recursive equation for the partition function:

$$Z_{n,m} = u(X_{n,m})Z_{n-1,m} + v(X_{n,m})Z_{n,m-1}.$$

By setting

$$U_{n,m} := Z_{n,m}/Z_{n-1,m}, \qquad V_{n,m} := Z_{n,m}/Z_{n,m-1},$$

the recursive equation can be rewritten as

$$R_{RPe}(X_{n,m}, U_{n,m-1}, V_{n-1,m}) = (U_{n,m}, V_{n,m}),$$

where

$$R_{RPe}(a, b, c) = \left(u(a) + v(a)\frac{b}{c}, u(a)\frac{c}{b} + v(a)\right).$$

Directed random polymer model with edge weights

The recursive equation for the partition function:

$$Z_{n,m} = u(X_{n,m})Z_{n-1,m} + v(X_{n,m})Z_{n,m-1}.$$

By setting

$$U_{n,m} := Z_{n,m}/Z_{n-1,m}, \qquad V_{n,m} := Z_{n,m}/Z_{n,m-1},$$

the recursive equation can be rewritten as

$$R_{RPe}(X_{n,m}, U_{n,m-1}, V_{n-1,m}) = (U_{n,m}, V_{n,m}),$$

where

$$R_{RPe}(a,b,c) = \left(u(a) + v(a)\frac{b}{c}, u(a)\frac{c}{b} + v(a)
ight).$$

If u(x) = v(x) = x, then the model reduces to a directed random polymer model with site weights, namely the partition function can be written

$$Z_{n,m} = \sum_{\pi:(0,0)\to(n,m)} \left\{ \prod_{(k,\ell)\in\pi\setminus\{(0,0)\}} X_{k,\ell} \right\}$$

(1+1)-dimensional stochastic lattice models

\mathbb{Z}^2 (whole lattice) version (formal)

- $(X_{n,m})_{n,m\in\mathbb{Z}^2}$: i.i.d. random variables
- $(Z_{n,m})_{n,m\in\mathbb{Z}^2}$: the partition function (formally) determined by $(X_{n,m})$
- $(U_{n,m})_{n,m\in\mathbb{Z}^2}$: the 'derivative' (in a suitable sense) of $(Z_{n,m})$ in the first-coordinate directions
- $(V_{n,m})_{n,m\in\mathbb{Z}^2}$: the 'derivative' (in a suitable sense) of $(Z_{n,m})$ in the second-coordinate directions

Typically one has a recursive relation of the form:

$$R(X_{n,m}, U_{n,m-1}, V_{n-1,m}) = (U_{n,m}, V_{n,m}), \qquad (1)$$

where $R: J_1 \times I_1 \times I_2 \rightarrow I_1 \times I_2$ for some subsets $J_1, I_1, I_2 \subseteq \mathbb{R}$ (usually intervals or discrete subsets).

Stationary solutions

If there exists a triplet of probability measures ($\tilde{\mu},\mu,\nu)$ on $J_1,~I_1$ and I_2 such that

$$R\left(\tilde{\mu} \times \mu \times \nu\right) = \mu \times \nu, \tag{2}$$

then we say that the stochastic lattice model has a stationary solution with

$$X_{n,m} \sim \tilde{\mu}, \quad U_{n,m} \sim \mu, \quad V_{n,m} \sim \nu.$$

In fact, we can construct 'upper-right corner'-version and then by using its translation, we can construct 'stationary version'.

'upper-right corner'-version

- $(X_{n,m})_{n,m\in\mathbb{N}}$: i.i.d. random variables
- $(U_{n,0})_{n\in\mathbb{N}}$: i.i.d. random variables
- $(V_{0,n})_{n\in\mathbb{N}}$: i.i.d. random variables
- $(U_{n,m})_{n,m\in\mathbb{N}}$ and $(V_{n,m})_{n,m\in\mathbb{N}}$: Determined by the recursive relation (1).

```
"Problem : Find a stationary model" is reduced to the following : Problem : Find a triplet of probability measures (\tilde{\mu}, \mu, \nu) such that
```

$$R\left(\tilde{\mu}\times\mu\times\nu\right)=\mu\times\nu.$$

Moreover, Chaumont and Noack reduced this problem to find a solution of $F(\mu \times \nu) = \tilde{\mu} \times \tilde{\nu}$ for a properly chosen F. In particular, for their study, F_{Ga} and F_{Be} appear.

Characterization of stationary solutions by H. Chaumont and C. Noack

Suppose

• u(x) = x,

and some further technical assumptions on v and also measures $\mu, \nu, \tilde{\mu}$.

Theorem (H. Chaumont and C. Noack (2018))

Under the assumption, R_{PRe} has a triplet of probability measures $(\tilde{\mu}, \mu, \nu)$ satisfying (2) if and only if $\mathbf{v}(\mathbf{x}) = \alpha + \beta \mathbf{x}$ for some $\alpha, \beta \in \mathbb{R}$ such that $\max\{\alpha, \beta\} > 0$. By making simple changes of variables, these can be reduced to the four cases with (α, β) being given by (0, 1), (1, 0), (-1, 1)or (1, -1). Moreover, the solutions are completely characterized explicitly, and the distribution of $X_{n,m}$ is inverse-gamma, gamma, inverse-beta, and beta respectively, and each model has three parameters.

Zero-temperature limit of the model

- $(X_{n,m})_{n,m\in\mathbb{Z}_+}$: i.i.d. random variables
- $u, v : \mathbb{R} \to \mathbb{R}$

The partition function

$$Z_{n,m} = \min_{\pi:(0,0)\to(n,m)} \left\{ \sum_{e\in\pi} Y_e \right\}, \qquad \forall n,m\in\mathbb{Z}_+,$$

where

$$Y_e := \begin{cases} u(X_{k,\ell}), & \text{if } e = ((k-1,\ell), (k,\ell)), \\ v(X_{k,\ell}), & \text{if } e = ((k,\ell-1), (k,\ell)). \end{cases}$$

The recursive equation for the partition function:

$$Z_{n,m} = \min\{u(X_{n,m}) + Z_{n-1,m}, v(X_{n,m}) + Z_{n,m-1}\}$$

By setting $U_{n,m} := Z_{n,m} - Z_{n-1,m}$, $V_{n,m} := Z_{n,m} - Z_{n,m-1}$, the recursive equation can be rewritten as

$$R_{RPe}^{zero}(a, b, c) = (\min\{u(a), v(a) + b - c\}, \min\{u(a) + c - b, v(a)\}).$$

 $R_{(\alpha,\beta)}^{zero}$: a proper zero-temperature limit of R_{RPe} with u(x) = x and $v(x) = \alpha + \beta x$. They are known in literature as :

- (α, β) = (0, 1) : Directed last passage percolation (LPP) with exponential/geometric waiting times (u(x) = v(x) = x)
- (α, β) = (1,0) : Directed first passage percolation (FPP) with exponential/geometric waiting times (u(x) = x, v(x) = 0)
- (α, β) = (1, 1)(" = "(-1, 1)) : Bernoulli-exponential/geometric polymer (u(x) = x, v(x) = min{x, 0})
- (α, β) = (1, -1) : Bernoulli-exponential/geometric FPP, introduced as a zero-temperature limit of the β-RWRE, also called the river delta model (u(x) = − min{x,0}, v(x) = max{x,0})

Explicit stationary solutions : continuous measures

Theorem (Croydon-S, 2022)

For each $R_{(\alpha,\beta)}^{zero}$ with $(\alpha,\beta) = (0,1), (1,0), (1,1)$ or (1,-1), we explicitly obtained a class of triplet $(\tilde{\mu}, \mu, \nu)$ satisfying (2). Each class of measures consists of continuous measures (which may have an atom at 0) with three parameters and discrete measures with four parameters.

- Directed LPP $R_{(0,1)}^{zero}$ (site weights) $(\tilde{\mu}, \mu, \nu) = (-sExp(\rho + \sigma, \tau), -sExp(\rho, \tau), -sExp(\sigma, \tau))$
- Directed FPP $R_{(1,0)}^{zero}$ $(\tilde{\mu}, \mu, \nu) = (sExp(\sigma, \tau), sExp(\rho + \sigma, \tau), \min\{AL(\sigma, \rho), 0\})$
- Bernoulli-exponential/geometric polymer R^{zero}_(1,1)

 $(\tilde{\mu}, \mu, \nu) = (AL(\rho, \sigma + \tau), AL(\rho + \sigma, \tau), \min\{AL(\rho, \sigma), 0\}))$

- Bernoulli-exponential/geometric FPP $\tilde{R}_{(1,-1)}^{zero}$ $(\tilde{\mu}, \mu, \nu) = (AL(\tau, \sigma), \max\{AL(\rho + \sigma, \tau), 0\}, \min\{AL(\sigma, \rho), 0\})$
- Discrete versions are obtained by sEXP
 ightarrow ssGeo, AL
 ightarrow dAL

- The explicit solution for the river delta model was not known.
- Key of the proof is to introduce the zero-temperature version of $F_{\rm Be}$ through $F_{\rm Be}^+$, and also connect R and F properly. Some new aspects of zero-temperature version were found.
- The proof explains how the Bernoulli-exponential distribution appear naturally in these models.
- Recently, the matrix-valued versions of stationary random polymer models related have been studied by O' Connell. The stationarity is explained by the IP property of the matrix version of F_{Ga} .

Independence preserving property

2 Classical integrable systems

3 Stochastic integrable models

4 Yang-Baxter map

A bijection $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is called a Yang-Baxter map if

$$F_{12} \circ F_{13} \circ F_{23} = F_{23} \circ F_{13} \circ F_{12}$$

where

$$F_{ij}: \mathcal{X} \times \mathcal{X} \times \mathcal{X} \to \mathcal{X} \times \mathcal{X} \times \mathcal{X}$$

acts on the *i*-th and *j*-th factors. Namely, denoting (u(x, y), v(x, y)) = F(x, y),

$$\begin{split} F_{12}(x_1, x_2, x_3) &= (u(x_1, x_2), v(x_1, x_2), x_3), \\ F_{13}(x_1, x_2, x_3) &= (u(x_1, x_3), x_2, v(x_1, x_3)), \\ F_{23}(x_1, x_2, x_3) &= (x_1, u(x_2, x_3), v(x_2, x_3)). \end{split}$$

Introduced by Drinfeld as the "set-theoretical" Yang-Baxter equation in 1992.

A family of bijections $F(\alpha, \beta) : \mathcal{X} \times \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ with parameters α, β in a certain set of parameters Θ , they are Yang-Baxter maps if

 $F_{12}(\lambda_1,\lambda_2) \circ F_{13}(\lambda_1,\lambda_3) \circ F_{23}(\lambda_2,\lambda_3) = F_{23}(\lambda_2,\lambda_3) \circ F_{13}(\lambda_1,\lambda_3) \circ F_{12}(\lambda_1,\lambda_2)$

holds for any parameters λ_1, λ_2 and $\lambda_3 \in \Theta$.

By replacing ${\mathcal X}$ with ${\mathcal X}\times\Theta$ and considering

 $\tilde{F}((x,\alpha),(y,\beta)) := ((u(\alpha,\beta)(x,y),\alpha),(v(\alpha,\beta)(x,y),\beta))$

where $F(\alpha, \beta)(x, y) = (u(\alpha, b)(x, y), v(\alpha, \beta)(x, y))$, we obtain a (parameter-independent) Yang-baxter map \tilde{F} .

Questions about the relation between the IP property and the integrability

Recall that $(F_{mdKdV}^{\alpha,\beta})_{\alpha,\beta}$ satisfies the parameter dependent Yang-Baxter relation.

- Do other bijections having IP property satisfy Yang-Baxter relation in a reasonable sense?
- Do all integrable lattice dynamics have i.i.d. invariant measures?
- Is there any relation between Yang-Baxter maps and the independence preserving property?

Classification of quadrirational Yang-Baxter maps

- For $\mathcal{X} = \mathbb{CP}^1$, some classification results of Yang-Baxter maps were known.
- $F : \mathbb{CP}^1 \times \mathbb{CP}^1 \to \mathbb{CP}^1 \times \mathbb{CP}^1$, $(x, y) \mapsto (u(x, y), v(x, y)) :$ birational if F and F^{-1} are both rational functions.
- Companion map \$\bar{F}\$ of \$F\$ is defined as \$\bar{F}(u, y) = (x, v)\$ for (u, v) = \$F(x, y)\$ if it is well-defined.
- F: quadrivational if its companion map \overline{F} is well-defined and F and \overline{F} are both birational functions. (Adler et al. 2004)

Classification of quadrirational Yang-Baxter maps

- For $\mathcal{X} = \mathbb{CP}^1$, some classification results of Yang-Baxter maps were known.
- $F : \mathbb{CP}^1 \times \mathbb{CP}^1 \to \mathbb{CP}^1 \times \mathbb{CP}^1$, $(x, y) \mapsto (u(x, y), v(x, y)) :$ birational if F and F^{-1} are both rational functions.
- Companion map \$\bar{F}\$ of \$F\$ is defined as \$\bar{F}(u, y) = (x, v)\$ for (u, v) = \$F(x, y)\$ if it is well-defined.
- F: quadrivational if its companion map \overline{F} is well-defined and F and \overline{F} are both birational functions. (Adler et al. 2004)

Theorem (Adler, Bobenko, Suris (2004))

Any quadrivational map F(x, y) = (u(x, y), v(x, y)) has the form:

$$u(x,y) = \frac{a(y)x + b(y)}{c(y)x + d(y)}, \quad v(x,y) = \frac{A(x)y + B(x)}{C(x)y + D(x)}$$

where $a(y), \ldots, d(y)$ are polynomials in y and $A(x), \ldots, D(x)$ are polynomials in x, whose degrees are all less than or equal to two.

There exist three subclasses of such maps, denoted by pair of numbers as [1:1], [1:2] and [2:2] depending on the highest degrees of the coefficients of the polynomials for x and y.

The most rich and interesting subclass is [2 : 2].

Theorem (Adler, Bobenko, Suris (2004))

In the subclass [2 : 2] of quadrivational maps, up to the coordinate-wise Möbius transformations, there are only five families of quadrivational maps $F_I = (F_I^{\alpha,\beta}), F_{II} = (F_{II}^{\alpha,\beta}), \dots, F_V = (F_V^{\alpha,\beta})$ where all have parameters $\alpha, \beta \in \mathbb{C}$.

Remarkably, all of these five canonical representative maps $F_I = (F_I^{\alpha,\beta}), F_{II} = (F_{II}^{\alpha,\beta}), \dots, F_V = (F_V^{\alpha,\beta})$ are Yang-Baxter maps!

ŀ

Papageorgiou et al. (2010) pointed out that F_I , F_{II} and F_{III} have subtraction-free forms.

$$H_{I}^{+}(x,y) = \left(\frac{y}{\alpha}\frac{\beta + \alpha x + \beta y + \alpha\beta xy}{1 + x + y + \beta xy}, \frac{x}{\beta}\frac{\alpha + \alpha x + \beta y + \alpha\beta xy}{1 + x + y + \alpha xy}\right)$$
$$H_{II}^{+}(x,y) = \left(\frac{y}{\alpha}\frac{\beta + \alpha x + \beta y}{1 + x + y}, \frac{x}{\beta}\frac{\alpha + \alpha x + \beta y}{1 + x + y}\right)$$
$$H_{III,A}(x,y) = \left(\frac{y}{\alpha}\frac{\alpha x + \beta y}{x + y}, \frac{x}{\beta}\frac{\alpha x + \beta y}{x + y}\right)$$

Natural restriction from $\mathbb{CP}^1 \times \mathbb{CP}^1$ to $\mathbb{R}_+ \times \mathbb{R}_+$ exists.

 $H_{III,A}$ is equivalent to F_{mdKdV} up to a coordinate-wise change of variables.

IP property for quadrirational Yang-Baxter maps

Theorem (S-Uozumi(2022))

For the following distributions (X, Y), each F has the IP property. (i) $F = H_I^{+,\alpha,\beta}$. For $\lambda \in \mathbb{R}$, a, b > 0, $-\min\{a, b\} < \frac{\lambda}{2} < \min\{a, b\}$,

$$egin{array}{lll} X \sim \mathrm{Be}'(\lambda, {\it a}, {\it b} \; ; \; lpha, 1), & Y \sim \mathrm{Be}'(-\lambda, {\it a}, {\it b} \; ; \; eta, 1), \ U \sim \mathrm{Be}'(-\lambda, {\it a}, {\it b} \; ; \; lpha, 1), & V \sim \mathrm{Be}'(\lambda, {\it a}, {\it b} \; ; \; eta, 1) \end{array}$$

(ii) $F = H_{II}^{+,\alpha,\beta}$. For $\lambda \in \mathbb{R}$, $a, b > 0, -b < \frac{\lambda}{2} < b$, $X \sim K(\lambda, a, b; \alpha, 1), \quad Y \sim K(-\lambda, a, b; \beta, 1),$ $U \sim K(-\lambda, a, b; \alpha, 1), \quad V \sim K(\lambda, a, b; \beta, 1)$

(iii) $F = H^{lpha,eta}_{III,A}$. For $\lambda \in \mathbb{R}$, a, b > 0,

 $X \sim \operatorname{GIG}(\lambda, a, b; \alpha, 1), \quad Y \sim \operatorname{GIG}(-\lambda, a, b; \beta, 1),$ $U \sim \operatorname{GIG}(-\lambda, a, b; \alpha, 1), \quad V \sim \operatorname{GIG}(\lambda, a, b; \beta, 1).$

Probability distributions

Generalized Beta prime distribution (p, q) For $\lambda, a, b \in \mathbb{R}$, $-b < \frac{\lambda}{2} < a$, the Generalized Beta prime distribution $Be'(\lambda, a, b; p, q)$, has density

$$\frac{1}{Z}x^{\lambda-1}(1+px)^{-a-\frac{\lambda}{2}}(1+qx^{-1})^{-b+\frac{\lambda}{2}}, \qquad x \in \mathbb{R}_+.$$

Kummer distribution of Type 2 (p, q) For $\lambda, b \in \mathbb{R}$, $a > 0, -b < \frac{\lambda}{2}$, the *Kummer* distribution of Type 2 K $(\lambda, a, b; p, q)$, has density

$$\frac{1}{Z}x^{\lambda-1}e^{-apx}(1+qx^{-1})^{-b+\frac{\lambda}{2}}, \qquad x \in \mathbb{R}_+.$$

Generalized inverse Gaussian distribution (p, q) For $\lambda \in \mathbb{R}$, a, b > 0, the generalized inverse Gaussian distribution $GIG(\lambda, a, b; p, q)$, has density

$$\frac{1}{Z}x^{\lambda-1}e^{-apx}e^{-bqx^{-1}}, \qquad x \in \mathbb{R}_+.$$

Scaling relations

Yang-Baxter maps

(*i*)
$$\lim_{\epsilon \downarrow 0} H_{I}^{+,\epsilon\alpha,\epsilon\beta} = H_{II}^{+,\alpha,\beta}$$

(*ii*)
$$\lim_{\epsilon \downarrow 0} (\theta_{\epsilon} \times \theta_{\epsilon}) \circ H_{II}^{+,\alpha,\beta} \circ (\theta_{\epsilon} \times \theta_{\epsilon})^{-1} = H_{III,A}^{\alpha,\beta}$$

where $\theta_{\epsilon}(x) = \epsilon x : \mathbb{R}_+ \to \mathbb{R}_+$.

Probability distributions

(i)
$$\lim_{\epsilon \downarrow 0} (1 + \epsilon px)^{-\frac{a}{\epsilon} - \frac{\lambda}{2}} = e^{-apx}$$

(ii)
$$\lim_{\epsilon \downarrow 0} \operatorname{Be}'(\lambda, \frac{a}{\epsilon}, b; \epsilon p, q) = \operatorname{K}(\lambda, a, b; p, q)$$

(iii)
$$\lim_{\epsilon \downarrow 0} (1 + \epsilon qx^{-1})^{-\frac{b}{\epsilon} - \frac{\lambda}{2}} = e^{-bqx^{-1}}$$

(iv)
$$\lim_{\epsilon \downarrow 0} \operatorname{K}(\lambda, a, \frac{b}{\epsilon}; p, \epsilon q) = \operatorname{GIG}(\lambda, a, b; p, q)$$

Hence, claims (ii) and (iii) of Theorem follows from the claim (i) of Theorem.

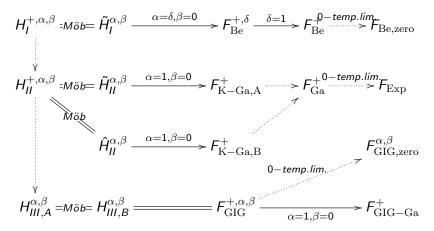
Special cases

The bijections $F_{\text{Be}}^{+,\delta}$, $F_{\text{K-Ga},A}^{+}$, $F_{\text{K-Ga},B}^{+}$, F_{Ga}^{+} and $F_{\text{GIG}}^{+,\alpha,\beta}$ are obtained from one of $H_{I}^{+,\alpha,\beta}$, $H_{II}^{+,\alpha,\beta}$ and $H_{III,A}^{\alpha,\beta}$ by Möbius transformations and singular limits.

Theorem

$$\begin{array}{l} (i) \ F_{\mathrm{Be}}^{+,\delta} = \tilde{H}_{I}^{\delta,0} \ \text{where} \ \tilde{H}_{I}^{\alpha,\beta} = ((I \circ \theta_{\alpha}) \times (I \circ \theta_{\beta})) \circ H_{I}^{+,\alpha,\beta}. \\ (ii) \ F_{\mathrm{K-Ga,A}}^{+} = \tilde{H}_{II}^{1,0} \ \text{where} \ \tilde{H}_{II}^{\alpha,\beta} = H_{II}^{+,\alpha,\beta} \circ (\theta_{\alpha^{-1}} \times \theta_{\beta^{-1}}). \\ (iii) \ F_{\mathrm{K-Ga,B}}^{+} = \hat{H}_{II}^{1,0} \ \text{where} \ \hat{H}_{II}^{\alpha,\beta} = (\theta_{\alpha^{-1}} \times \theta_{\beta^{-1}}) \circ H_{II}^{+,\frac{1}{\alpha},\frac{1}{\beta}} \circ (\theta_{\alpha} \times \theta_{\beta}). \\ (iv) \ F_{\mathrm{Ga}}^{+} = \tilde{F}_{\mathrm{K-Ga,A}}^{0} \ \text{where} \ \tilde{F}_{\mathrm{K-Ga,A}}^{\epsilon} = (\theta_{\epsilon^{-1}} \times I_{d}) \circ F_{\mathrm{K-Ga,A}}^{+} \circ (\theta_{\epsilon} \times \theta_{\epsilon}). \\ (v) \ F_{\mathrm{Ga}}^{+} = \tilde{F}_{\mathrm{K-Ga,B}}^{0} \ \text{where} \ \tilde{F}_{\mathrm{K-Ga,B}}^{\epsilon} = \pi \circ (I \times \theta_{\epsilon}) \circ F_{\mathrm{K-Ga,B}}^{+} \circ (\theta_{\epsilon^{-1}} \times \theta_{\epsilon^{-1}}). \\ (vi) \ F_{\mathrm{GIG}}^{+} = ((I \circ \theta_{\alpha}) \times I_{d}) \circ H_{\mathrm{III,A}}^{\alpha,\beta} \circ (I_{d} \times (I \circ \theta_{\beta})) \\ \text{where} \ I(x) = \frac{1}{x}, \ I_{d}(x) = x. \end{array}$$

Relations between bijections having the IP property



All known maps except F_N on the product of open intervals of \mathbb{R} are understood in a unified manner! These relations and the IP property for H_I^+ recover all the IP property (if part) for all bijections with continuous distributions except F_N .

- The IP property for H_{II}^+ was independently found by Wesolowski and Koudou earlier than us. Moreover, they proved the "only if" part, namely the characterization of solutions (Bernoulli, 2025).
- The IP property for H_I^+ was completely new. The "only if" part, namely the characterization of solutions was recently proved by Kolodziejek, Letac, Piccioni and Wesolowski (arXiv:2501.17007).
- There is no complete classification of Yang-Baxter maps nor bijections with IP property, so there is nothing for sure, but it seems there might be some relation.

- We also obtained the ultra-discrete version (zero-temperature version) of the IP property for three quadrirational maps (joint work with Kondou and Nakajima). Is there any geometric way to understand it?
- Can we construct a parameter-dependent Yang-Baxter map on the positive symmetric matrices of symmetric cones by using the matrix version of bijections having the IP property?
- Are there any classical/stochastic integrable models associated to other bijections having the IP property?
- Is there any direct relation between the Yang-Baxter maps and bijections having the IP property?