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Interacting particle systems
Goal : Derive macroscopic evolution equations  
 from microscopic dynamics of particles

★ Microscopic dynamics is typically a stochastic process  

★ Macroscopic deterministic PDE is derived by a proper space-
time scaling limit as a law of large numbers (Hydrodynamic limit) 

★ The scaling limits of the microscopic fluctuations (central 
limit theorem) around the hydrodynamic limit are interesting 
research subjects : EW universality, KPZ universality,… 



Main message of this short course

The simplest model of discrete integrable systems is  
“Box-ball system”

in 
space and time deterministic 

Discrete integrable systems are interesting!
★ They are a rich source of probabilistic problems!  
★ They spotlight some classical subjects/topics in 
probability again! eg. Pitman(1974), Lukacs(1955), Crawford(1966)… 

★ They are “mathematically tractable” models for testing 
Generalized Hydrodynamics (GHD) (2016-, Doyon, Spohn…).  
★ They may have an exciting relationship with models in 
the integrable probability. 



Plan

1. Box-ball system 
2. Other discrete integrable systems 
3. General frameworks and theorems for invariant measures 
4. Generalized Hydrodynamics for BBS



1. Box-ball system



Box-ball system (BBS)
Introduced in 1990 by Takahashi-Satsuma

Ωf := {η = (ηn)n ∈ {0,1}ℤ | ∑
n∈ℤ

ηn < ∞}State space :  

‣ Finite number of balls  
‣ Discrete time  
‣ Deterministic dynamics
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Dynamics of BBS
‣Every ball moves exactly once in each time step. 
‣The leftmost ball moves first, the next leftmost ball 
moves next, and so on...  
‣Each ball moves to its nearest right vacant box.
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Solitons of BBS
‣ (1,0), (1,1,0,0), (1,1,1,0,0,0) . . . are ‘solitons’ 
‣ Call (1,1, . . . ,1, 0,0, . . . ,0) a size k soliton if it contains k 
copies of 1  
‣ Size k soliton moves with speed k (speed in isolation)

When size k soliton and size m soliton interact, bigger soliton is pushed forward by 
 sites and smaller soliton is pushed back by  sites.  (phase shift) 

Moreover, a three (or more)-soliton interaction is factorized into well separated two-
soliton interactions. (Yang-Baxter equation) 

2 min{k, m} 2 min{k, m}



Known properties of BBS
‣ The BBS has been deeply studied from algebraic points of view.  
‣ Any configuration is decomposed into solitons. 
‣ Initial value problem is solvable by the inverse scattering method. 
‣ For all k, the number of size k solitons are conserved. Hence,  the BBS 
has infinitely many conserved quantities. 

‣ The BBS is reversible as a dynamical system. Well-defined for time .  
‣ The BBS is the “ultra-discretization” of the discrete KdV equation. 
‣ There are many integrable variants of the BBS.  
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“Equation of motion” of BBS
  ball configuration        

 The BBS dynamics (one time-step) map :  

η ∈ Ωf : Ωf := {η = (ηn)n ∈ {0,1}ℤ | ∑
n∈ℤ

ηn < ∞}
T : Ωf → Ωf

Tηn = 0 if ηm = 0 ∀m ≤ n

Tηn = min {1 − ηn , ∑n−1
m=−∞ (ηm − Tηm)}

Non-local.  Infinite sum.

Probabilistic point of view : No invariant measure on  !! 

Need to define the BBS with infinite balls (bi-infinite BBS).

Ωf



Dynamics of BBS 
(Definition 2)
‣A carrier goes through from 
left to right.  

‣The carrier picks up a ball if it 
finds a ball. 

‣The carrier puts down a ball if 
it comes to an empty box when 
it carries at least one ball.

Key description for 
 probabilistic approach



Auxiliary variable W : carrier 

Wn =
n

∑
m=−∞

(ηm − Tηm)

(Tηn, Wn) = FBBS (ηn, Wn−1)

FBBS (a, b) = (min{1 − a, b}, a + b − min{1 − a, b}), FBBS = F−1
BBS

The number of balls on the carrier as it passes 
location , which is actually a current of ballsn

Wn :

{Tηn = min{1 − ηn, Wn−1}
Wn = Wn−1 + ηn − Tηn = Wn−1 + ηn − min{1 − ηn, Wn−1}

Local conservation of  
the number of balls 



2-dimensional lattice description of BBS 

Initial value problem for the BBS : For a given   is a solution of 

the initial value problem of the BBS if  

η ∈ {0,1}ℤ, (ηt
n, Wt

n)n,t∈ℤ

{η0
n = ηn ∀n ∈ ℤ

(ηt+1
n , Wt

n) = FBBS(ηt
n, Wt

n−1) ∀n, t ∈ ℤ

Q : When a solution exists?  
      Is it unique? 



Initial value problem for BBS

Ω := {η ∈ {0,1}ℤ | ∃ lim
n→±∞

∑n
k=0 ηk

n
<

1
2 } .

Theorem (Croydon-S-Tsujimoto 2022, cf. Ferrari-Nguyen-Rolla-Wang, Croydon-Kato-S-

Tsujimoto) 
Suppose  , then there exists a unique solution, and  for any .  

The dynamics agrees with the finite BBS and also with the periodic BBS. 

η ∈ Ω ηt ∈ Ω t ∈ ℤ

Key of the proof : Pitman’s transform

 {η0
n = ηn ∀n ∈ ℤ

(ηt+1
n , Wt

n) = FBBS(ηt
n, Wt

n−1) ∀n, t ∈ ℤ



Pitman’s transform

Two-sided version : , continuous 
               

S : ℝ → ℝ, S0 = 0

Mx := max
y≤x

Sy, TSx := 2Mx − Sx − 2M0

Theorem (Pitman, 1975) 
S : Brownian motion                 TS : 3-dimensional Bessel process⇒

One-sided version : , continuous 

 : reflection w.r.t. the past maximum 

S : ℝ≥0 → ℝ, S0 = 0

Mx := max
0≤y≤x

Sy, TSx := 2Mx − Sx

Theorem (Harrison-Williams, 1987) 
S : Brownian motion + positive drift                 S (d)= TS⇒



Exponential version of Pitman’s transform

Two-sided version : , continuous 

                

S : ℝ → ℝ

Mx := log∫
x

−∞
exp(Sy)dy, TSx := 2Mx − Sx − 2M0

Theorem (Matsumoto-Yor, 2000) 
S : Brownian motion                 TS : Brownian motion in exponential potential⇒

One-sided version : , continuous 

            

S : ℝ≥0 → ℝ, S0 = 0

Mx := log∫
x

0
exp(Sy)dy, TSx := 2Mx − Sx

Theorem (O'Connell-Yor, 2001) 
S : Brownian motion +positive drift                 S (d)= TS⇒



Path encoding of ball configurations of BBS
Path encoding : S0 = 0, Sn − Sn−1 = 1 − 2ηn ∈ {1, − 1}
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BBS = Pitman’s transform
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Mn := max
m≤n

Sm

Wn = Mn − Sn, TSn = 2Mn − Sn − 2M0We have 

TS :=

Product Bernoulli measures 
are invariant for BBS !

Path encoding of  Tη



Another formulation of BBS (Toda-type)
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Dynamics of the BBS :
Qt+1
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j },
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(Qt+1
n , Et+1

n , Wt
n) = FBBS,Toda(Qt

n+1, Et
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n−1)
FBBS,Toda(a, b, c) = (min{b, c}, a + b − min{b, c}, a + c − min{b, c})



Decomposition of  into  FBBS,Toda F*BBS,Toda

FBBS,Toda(a, b, c) = (min{b, c}, a + b − min{b, c}, a + c − min{b, c})

F*BBS,Toda(a, b) = (min{a, b}, a − b)

F*BBS,Toda
−1(a, b) = (a + max{0, b}, a + max{0, − b})

FBBS,Toda F*BBS,Toda F*BBS,Toda
−1
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Problems from a probabilistic perspective
• Scaling limits (LLN, fluctuation, LDP) of the soliton distributions for a specific class of 
random initial measures on  as . (Levine-Lyu-Pike 2022, Kuniba-Lyu-Okado 
2018, Kuniba-Lyu 2019,..,) 

•  Construction and characterization of invariant measures. Ergodicity.  
    (Ferrari-Nguyen-Rolla-Wang 2021, Croydon-Kato-S-Tsujimoto 2023, Croydon-S 2019, 
Ferrari-Gabrielli 2020,..,) 

•  Scaling limits of the density of solitons/current/tagged soliton/tagged ball for random 
initial conditions.   (Ferrari-Nguyen-Rolla-Wang 2021, Croydon-Kato-S-Tsujimoto 2023, 
Croydon-S 2021, Olla-S-Suda 2024+) 

{0,1}N N → ∞

By Croydon



2. Other discrete integrable systems
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discrete integrable system

Other discrete integrable models

∂tu + ∂xxxu + 6u∂xu = 0 {∂tIn = Vn − Vn−1

∂tVn = Vn(In − In+1)

Figure : Brunelli



Ultra-discrete KdV (udKdV) equation

  : Model parameter , L ∈ ℝ ηt
n ∈ ℝ

(ηt+1
n , Wt

n) = F(L)
udK (ηt

n, Wt
n−1)

F(L)
udK (a, b) = (min{L − a, b}, a + b − min{L − a, b}), F(L)

udK = F(L)
udK

−1

ηt+1
n = min {L − ηt

n ,
n−1

∑
m=−∞

(ηt
m − ηt+1

m )} ↔

Path encoding and Pitman’s transform for udKdV equation

Sn − Sn−1 := L − 2ηn, Mn := max
m≤n

Sm + Sm−1

2
If  and , then the udKdV equation is the BBS with box 
capacity L. 

L ∈ ℕ ηt
n ∈ {0,1,2,…, L}



Discrete KdV (dKdV) equation
  : Model parameter , δ > 0 ut

n > 0

(ut+1
n , Wt

n) = F(δ)
dK (ut

n, Wt
n−1)

F(δ)
dK (a, b) = ( b

1 + δab
, a(1 + δab)), F(δ)

dK = F(δ)
dK

−1

ut+1
n =

δ
ut

n
+

n−1

∏
m=−∞

ut
m

ut+1
m

↔

Path encoding and Pitman’s transform for dKdV equation

Sn − Sn−1 := − log δ − 2 log un, Mn := log ∑
m≤n

exp ( Sn + Sn−1

2 )



Remarks

ut+1
n =

δ
ut

n
+

n−1

∏
m=−∞

ut
m

ut+1
m

↔
1

ut+1
n+1

−
1
ut

n
= δ(ut+1

n − ut
n+1)

• DKdV equation has a close from without W nor the infinite product. 

• UdKdV equation is the ultra-discretization of dKdV equation.

ut+1
n =

δ
ut

n
+

n−1

∏
m=−∞

ut
m

ut+1
m

→ ηt+1
n = min{L − ηt

n,
n−1

∑
m=−∞

(ηt
m − ηt+1

m )}

( + , × ) → (min , + )

• DKdV equation is a discretization of KdV equation. Precisely, KdV equation 
is a continuous limit of dKdV equation.



Ultra-discrete Toda (udToda) equation

(Qt+1
n , Et+1

n , Wt
n) = FudT(Qt

n+1, Et
n, Wt

n−1)

Qt
n, Et

n ∈ ℝ
Qt+1

n = min{Et
n, ∑n

j=−∞ Qt
j − ∑n−1

j=−∞ Qt+1
j },

Et+1
n = Qt

n+1 + Et
n − Qt+1

n

↔

FudT(a, b, c) = (min{b, c}, a + b − min{b, c}, a + c − min{b, c})

Path encoding and Pitman’s transform for udToda equation

S2n+1 − S2n := − Qn+1, S2n − S2n−1 := En, M2n+1 := max
m≤n

S2m, M2n =
M2n−1 + M2n+1

2

F*udT(a, b) = (min{a, b}, a − b)



Ultra-discrete Toda equation
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Discrete Toda (udToda) equation

(It+1
n , Vt+1

n , Wt
n) = FdT(It

n+1, Vt
n, Wt

n−1)

It
n > 0, Vt

n > 0

It+1
n = Vt

n +
∏n

j=−∞ It
j

∏n−1
j=−∞ It+1

j

Vt+1
n =

It
n+1Vt

n

It+1
n

↔
It+1
n = It

n + Vt
n − Vt+1

n−1

Vt+1
n =

It
n+1Vt

n

It+1
n

↔

FdT(a, b, c) = (b + c,
ab

b + c
,

ac
b + c )

Path encoding and Pitman’s transform for udToda equation
S2n+1 − S2n := log In+1, S2n − S2n−1 := − log Vn

M2n+1 := log( ∑
m≤n

exp(S2m)), M2n =
M2n−1 + M2n+1

2

F*dT(a, b) = (a + b,
a

a + b )



Pitman’s type transforms

By Croydon



Results for d/ud KdV/Toda equations (Croydon-S-Tsujimoto 2022)    
‣ Formalize the bi-infinite dynamics as a solution of initial value problem 
with the 2-dimensional lattice description

‣ Introduce a path encoding and derive a Pitman’s type transform 
description  S → TS = 2M − S − 2M0

‣ Prove that all Pitman’s type transforms are well-defined and invariant on 
asymptotically linear functions with positive drift :

{x0
n = xn ∀n ∈ ℤ

(xt+1
n , yt

n) = F(xt
n, yt

n−1) ∀n, t ∈ ℤ

𝒮lin := {S : ℤ → ℝ |∃ lim
n→±∞

Sn

n
> 0, S0 = 0}

‣ Moreover, the existence and uniqueness of solution holds on . The set 

of configurations whose path-encoding is in  includes the support of 
many shift ergodic measures.

𝒮lin

𝒮lin



3. General frameworks and 
theorems for invariant measures



KdV-type locally-defined dynamics
𝒳0, 𝒴0 : Polish spaces

F : 𝒳0 × 𝒴0 → 𝒳0 × 𝒴0, F = F−1

𝒳 := 𝒳ℤ
0

𝒳* := {x ∈ 𝒳 ; ∃! solution of initial value problem for x}

For a given   is 

a solution of the initial value problem 
for  if 

 

x = (xn) ∈ 𝒳, (xt
n, yt

n)n,t∈ℤ

x

{x0
n = xn ∀n ∈ ℤ

(xt+1
n , yt

n) = F(xt
n, yt

n−1) ∀n, t ∈ ℤ



Characterization of i.i.d. type invariant measures

Theorem (Croydon-S, 2021) 
Let  be a probability measure on  satisfying  .  Then,  

       (i.e.  is invariant)       
      : a probability measure on  such that  

μ 𝒳0 μℤ(𝒳*) = 1

μℤ = Tμℤ μℤ

⇔ ∃ν 𝒴0 F(μ × ν) = μ × ν

For ,  is well-defined where  is the 
unique solution of the initial value problem for .

x ∈ 𝒳* Tx := x1 = (x1
n) ∈ 𝒳 (xt

n, yt
n)

x



Toda-type locally-defined dynamics
𝒳0, 𝒳̃0, 𝒴0, 𝒴̃0 : Polish spaces

F : 𝒳0 × 𝒴0 → 𝒳̃0 × 𝒴̃0, F :

𝒳 := (𝒳0 × 𝒳̃0)ℤ

𝒳* := {x ∈ 𝒳 ; ∃! solution of initial value problem for x}

For a given   is a solution of 

the initial value problem for  if 

 

x = (xn) ∈ 𝒳, (xt
n, yt

n)n,t∈ℤ

x

{x0
n = xn ∀n ∈ ℤ

(xt+1
n−1, yt

n) = Fn(xt
n, yt

n−1) ∀n, t ∈ ℤ

bijection
F2n := F, F2n+1 := F−1



Characterization of i.i.d. type invariant measures

Theorem (Croydon-S, 2021) 
Let  be probability measures on  satisfying  .  
Then,  
       (i.e.  is invariant)       

      : probability measures on  such that  

μ, μ̃ 𝒳0, 𝒳̃0 (μ × μ̃)ℤ(𝒳*) = 1

(μ × μ̃)ℤ = T(μ × μ̃)ℤ (μ × μ̃)ℤ

⇔ ∃ν, ν̃ 𝒴0, 𝒴̃0 F(μ × ν) = μ̃ × ν̃



Independence preserving property

Theorem (Ferguson 1964,1965, Crawford 1966) 
For .   

 or       　　　　　

F(x, y) = (min{x, y}, x − y)

F(μ × ν) = μ̃ × ν̃ ⇔ μ = sExp(a, σ), ν = sExp(b, σ)

μ = ssGeo(a, m, σ), ν = ssGeo(b, m, σ)

Theorem (Lukacs 1955) 

For .  F(x, y) = (x + y,
x

x + y ) F(μ × ν) = μ̃ × ν̃ ⇔ μ = Gam(a, σ), ν = Gam(b, σ)

Theorem (Kac 1939, Bernstein 1941) 
For .    F(x, y) = (x + y, x − y) F(μ × ν) = μ̃ × ν̃ ⇔ μ = N(a, σ), ν = N(b, σ)



Independence preserving property

Theorem (Croydon-S 2021 (if), Letac-Wesołowski 2022 (only if)) 

For .   

 

F(α,β)(x, y) = (y
1 + βxy
1 + αxy

, x
1 + αxy
1 + βxy )

F(μ × ν) = μ̃ × ν̃ ⇔ μ = GIG(a, bα, σ), ν = GIG(a, bβ, σ)

Theorem (Matsumoto-Yor, 2000) 

For .   

 

F(x, y) = ( 1
x + y

,
1
x

−
1

x + y )
F(μ × ν) = μ̃ × ν̃ ⇔ μ = GIG(a, b, − σ), ν = Gam(b, σ)



Application to concrete models

✦
 For  . Hence, 

 is invariant for the BBS. 

✦By Crawford’s theorem,   is 
invariant for the BBS. 

✦By Crawford’s theorem,  is 
invariant for the udToda equation.  

✦By Lukacs’s theorem  is 
invariant for the dToda equation.  

✦By Matsumoto-Yor’s theorem,   is invariant for the 

dKdV equation with parameter . 

p ∈ (0,
1
2 ), FBBS (Ber(p) × Geo ( 1 − 2p

1 − p )) = Ber(p) × Geo ( 1 − 2p
1 − p )

η = (ηn) : Ber(p) i.i.d.

(Qn)n : Geo(1 − q1q2) i.i.d. (En)n : Geo(1 − q1) i.i.d.

(Qn)n : Exp(λ1) i.i.d. (En)n : Exp(λ2) i.i.d., λ1 < λ2

(In)n : Gam(λ1, σ) i.i.d. (Vn)n : Gam(λ2, σ) i.i.d., λ1 > λ2

x = (xn) : GIG(c, cδ, σ) i.i.d.

δ



Yang-Baxter maps and independence preserving property

F(α,β) (x, y) = ( y(1 + βxy)
1 + αxy

,
x(1 + αxy)

1 + βxy ), F(δ)
dK = F(δ,0)

F(α,β)
12 ∘ F(α,γ)

13 ∘ F(β,γ)
23 = F(β,γ)

23 ∘ F(α,γ)
13 ∘ F(α,β)

12 : ℝ3
+ → ℝ3

+Yang-Baxter map : 

Independence preserving property : 
F(α,β)(GIG(λ, aα, b) × GIG(λ, bβ, a)) = GIG(λ, bα, a) × GIG(λ, aβ, b)

S-Uozumi (2022) : New classes of functions satisfying IP property are found in Yang-
Baxter maps. A special class of YB maps leads most of functions having IP property by 
change of variables/limiting procedure.

Multivariate version? New integrable models?

dmKdV equation :

Integrability     Existence of i.i.d. invariant measures? ⇔ ?



4. Generalized Hydrodynamics for BBS



Generalized hydrodynamics (GHD) for BBS
•Generalized Gibbs Ensembles (GGE) is characterized by the density of 
solitons  

• Under the GGE with a soliton density  , the speed of size k 

soliton is  with .  

• In non-equilibrium, the density of solitons  evolves 

according to the GHD equation :  

ρ = (ρk)k∈ℕ

ρ = (ρk)k∈ℕ

veff
k (ρ) = vk − ∑

m∈ℕ

κ(k, m)ρm(veff
m (ρ) − veff

k (ρ)) vk = k, κ(k, m) = 2 min{k, m}

ρ(t) = (ρ(t, k))k∈N

∂tρk(t, u) + ∂u(veff
k (ρ(t, u))ρk(t, u)) = 0



Rigorous results for BBS
• There is a “nice class” of invariant measures which are uniquely 
characterized by the density of solitons  (Ferrari-Gabrielli, 2020) 

• For a class of nice invariant measures with the soliton density  , 

the speed of size k soliton satisfies  

(Ferrari-Nguyen-Rolla-Wang 2021) 

• In non-equilibrium, the density of solitons  evolves 

according to the GHD equation :    (Croydon-S, 

2021) (Under several assumptions) 

ρ = (ρk)k∈ℕ

ρ = (ρk)k∈ℕ

veff
k (ρ) = vk − ∑

m∈ℕ

κ(k, m)ρm(veff
m (ρ) − veff

k (ρ))

ρ(t) = (ρ(t, k))k∈N

∂tρk(t, u) + ∂u(veff
k (ρ(t, u)ρk(t, u)) = 0



Final comments
★ Independence preserving property are also essential for some stochastic integrable models.  

★ Invariant measures (generalized Gibbs measures) for Toda and discrete Toda equations are 
related to random matrices via Lax matrices. 

★There are many open problems : 
‣ For some stochastic integrable models (called integrable Markov processes), it is shown that 
the transition probability solves an integrable differential equation. How about discrete 
models? 
‣ For a continuous path S, Pitman’s transform determines the continuous BBS. How to 
characterize solitons/invariant measures? 
‣ Non i.i.d. invariant measures for models other than BBS? GHD for models other than BBS?  
‣ CLT and LDP for the soliton density of BBS?

Discrete integrable systems remain a rich 
source of hidden mathematical wonders!
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Thank you very much 
for your attention!


