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I. Approximating optimal transportation by electrostatics

Kantorowicz’ formulation of Monge’s optimal transportation;

direct method of calculus of variations

Kantorowicz potential and Brenier’s map; convex duality

Eulerian perspective: trajectories X and flux q

Entering and exiting times σ, τ and measures f, g for a ball B̄

Electrostatics: the Helmholtz projection ∇u of q on B;

some regularity theory

Relating the Eulerian flux q
to the Lagrangian displacement (y − x)dπ, locally

The flux q is close to its Helmholtz projection ∇u;
almost in total variation norm



Kantorowicz’ formulation of Monge’s optimal transp.,

direct method of calculus of variations

Given: (locally finite Borel) measures

λ ≥ 0 on Rd ∋ x and µ ≥ 0 on Rd ∋ y.

A measure π ≥ 0 on Rd × Rd ∋ (x, y) is “admissible”

iff it has marginals λ and µ:
ˆ

ζ(x)dπ =

ˆ

ζdλ and

ˆ

ζ(y)dπ =

ˆ

ζdµ.

Provided mass is finite and equal

λ(Rd) = µ(Rd) ∈ (0,∞),

the product measure π = 1
λ(Rd)

λ ⊗ µ = 1
µ(Rd)

λ ⊗ µ is admissible.

Note that for any admissible π

π(Rd × R
d) = λ(Rd) = µ(Rd) < ∞.



Consider squared transport distance and

minimize

ˆ

|y − x|2dπ among all π admissible.

Provided λ, µ have finite second moments,
ˆ

|x|2dλ <∞ and

ˆ

|y|2dµ < ∞,

any admissible π satisfies (monotone convergence)

1

2

ˆ

|x− y|2dπ ≤
ˆ

|x|2 + |y|2dπ =

ˆ

|x|2dλ+

ˆ

|y|2dµ <∞.

In particular, infimum ∈ [0,∞), and any minimizing sequence of

π’s is tight, so that marginals are preserved in the limit. Since

functional is lower semi-continuous (Fatou), get minimizer by

direct method. We fix a minimizer π.



Kantorowicz potential and Brenier’s map; convex duality

By convex duality ∃convex function ψ : Rd → (−∞,+∞]

(not ≡ +∞) such that

suppπ ⊂ ∂ψ,

where the subgradient ∂ψ ⊂ Rd × Rd is defined by

(x, y) ∈ ∂ψ ⇐⇒ ∀ x′ ∈ R
d ψ(x′) ≥ ψ(x) + (x′ − x) · y.

Informally suppπ is d-dimensional, as opposed to 2d-dimensional

for product measure. In particular, we have

suppλ ⊂ {x | ∃y (x, y) ∈ ∂ψ } =: D(ψ).



Suppose ∃ an (open) ball B ⊂ Rd such that

B ⊂ suppλ.

Then have B ⊂ D(ψ) ⊂ {x |ψ(x) <∞}. As convex function, ψ is

locally bounded and locally Lipschitz on B. As locally Lipschitz

function, ψ is Lebesgue-almost everywhere differentiable on B.

If ψ is differentiable in x ∈ B, then by definition { y | (x, y) ∈ ∂ψ }
= {∇ψ(x)}. Hence there exists a Lebesgue null set N ⊂ B such

that

(x, y) ∈ ∂ψ and x ∈ B −N =⇒ y = ∇ψ(x).

If we suppose in addition

λ ≪ dx on B

then we obtain
ˆ

B×Rd
ζ(x, y)dπ =

ˆ

B
ζ(x,∇ψ(x))dλ.



Eulerian perspective: trajectories X and flux q

We identify pairs (x, y) ∈ Rd × Rd

with straight trajectories X : [0,1] → R
d via (the Borel map)

Xt = ty+ (1− t)x so that Ẋ = y − x.

Let the vectorial Borel measure q be defined through

ˆ

ξ · dq =

ˆ ˆ 1

0
ξ(Xt) · Ẋdtdπ,

where ξ is a bounded smooth vector field on Rd. Note q has finite

total variation since integrand ≤ sup |ξ| times |y − x| ≤ |x| + |y|
≤ 1+ 1

2|x|2 + 1
2|y|2.



Applying definition to gradient fields ξ = ∇ζ, appealing to the

chain rule ∇ζ(Xt) · Ẋ = d
dtζ(Xt), and to

´ 1
0 ∇ζ(Xt) · Ẋdt = ζ(y)−

ζ(x), we obtain by the admissibility of π
ˆ

∇ζ · dq =

ˆ

ζ(dµ− dλ).

Incidentally, this means

−∇ · dq = dµ− dλ distributionally.

In view of this we think of q as a flux.



Entering and exiting times σ, τ and measures f, g for a ball

Given a closed ball B̄ ⊂ Rd,

define ΩB̄ to be the set of trajectories that spend time in B̄:

ΩB̄
short
= Ω := {X = (x, y) | ∃t ∈ [0,1] Xt ∈ B̄ }.

Define the two Borel functions σB̄, τB̄ or short σ, τ : Ω → [0,1]

to be the times X enters/exits B̄:

σ(X) := min{t ∈ [0,1]|Xt ∈ B̄}
≤ max{t ∈ [0,1]|Xt ∈ B̄} =: τ(X).



Define the two Borel measures fB̄, gB̄ ≥ 0, or short f, g,

where the trajectories enter or exit:
ˆ

ζdf =

ˆ

Ω∩{σ>0}
ζ(Xσ)dπ and

ˆ

ζdg =

ˆ

Ω∩{τ<1}
ζ(Xτ)dπ;

well-defined because of π(Rd × Rd) <∞.

Since by definition,






σ(X) > 0 ⇐⇒ Xσ(X) ∈ ∂B

τ(X) < 1 ⇐⇒ Xτ(X) ∈ ∂B







we have

f, g are supported on ∂B.



Claim
ˆ

B̄
∇ζ · dq =

ˆ

B̄
ζ(dµ− dλ) +

ˆ

∂B
ζ(dg − df).

Apply definition of q to ξ = I(B̄)∇ζ,
use
´ 1
0 ξ(Xt)·Ẋdt =

´ τ
σ ∇ζ(Xt)·Ẋdt = ζ(Xτ(X))−ζ(Xσ(X)). Since

σ(X) = 0 ⇐⇒ x ∈ B̄ and τ(X) = 1 ⇐⇒ y ∈ B̄,

we get
ˆ 1

0
ξ(Xt) · Ẋdt = I(y ∈ B̄)ζ(y)− I(x ∈ B̄)ζ(x)

+ I(τ(X) < 1)ζ(Xτ(X))− I(σ(X) > 0)ζ(Xσ(X)).

Integrate against π, use admissibility of π and definition of f, g.

Incidentally,

normal trace of q on ∂B = g − f

provided |q|(∂B) = λ(∂B) = µ(∂B) = 0.



Electrostatics: the Helmholtz projection ∇u of q on B;

some regularity theory

Helmholtz projection HB = H on B is L2(B,Rd)-orthogonal pro-

jection onto closed subspace of gradient fields. By singular in-

tegral theory, if ξ is smooth on B̄, then Hξ is smooth on B̄, and

the Ck(B̄)-norm of Hξ is controlled by the Ck+1(B̄)-norm of ξ.

Moreover, H is characterized by how it acts on smooth fields,

namely

H∇ζ = ∇ζ for smooth ζ on B̄,

Hξ = 0 for smooth divergence-free ξ supported in B.

Hence to every distribution f on B̄, we can associate its Helmholtz

projection Hf by duality via Hf.ξ = f.Hξ. It is characterized by






Hf.∇ζ = f.∇ζ for smooth ζ on B̄,

Hf.ξ = 0 for smooth divergence-free ξ supported in B.



As finite measure, f = q⌊B̄ is a distribution.

Claim: Hf is absolutely continuous w. r. t. Lebesgue:

Hq⌊B̄ ≪ dx⌊B.

Enough to construct a uB = u ∈ H1,1(B) such that
ˆ

B
∇ζ · ∇udx =

ˆ

B̄
∇ζ · dq;

then we have Hq⌊B̄ = ∇udx⌊B. Enough to establish
ˆ

B
∇ζ · ∇udx =

ˆ

B̄
ζ(dµ− dλ) +

ˆ

∂B
ζ(dg − df).



Consider
´

B̄ ζ(dµ− dλ) +
´

∂B ζ(dg − df) as a linear form in ζ.

It is bounded w. r. t. supB̄ |ζ|; it vanishes for constant ζ.

By Sobolev embedding

sup
x,y∈B̄

|ζ(y)− ζ(x)|
|y − x|α

.
(

ˆ

B
|∇ζ|pdx

)
1
p

form is bounded w. r. t. ∇ζ ∈ Lp(B,Rd) for p ∈ (d,∞). By duality

it can be represented by
´

B∇ζ · q̃dx for some q̃ ∈ Lp
′
(B,Rd) with

p′ ∈ (1, d
d−1). Then ∇u is the Helmholtz projection of q̃, which

by singular integral theory is bounded in Lp
′
(B,Rd). In particular

u ∈ H1,p′(B) ⊂ H1,1(B).

Incidentally, u satisfies the Poisson equation with Neumann b. c.:

−△u = µ− λ in B and ν · ∇u = ν · q on ∂B in a weak sense.



Relating the Eulerian flux q

to the Lagrangian displacement (y − x)dπ, locally

From definition of q
ˆ

ξ(x) · (dq − (y − x)dπ)

=

ˆ 1

0
dt

ˆ

(

ξ(ty+ (1− t)x)− ξ(x)
)

· (y − x)dπ,

we obtain the inequality

∣

∣

∣

ˆ

ξ(x) · (dq − (y − x)dπ)
∣

∣

∣ ≤ sup |∇ξ|
ˆ 1

0
dt

ˆ

t|y − x|2dπ,

which entails
∣

∣

∣

ˆ

ξ(x) · (dq − (y − x)dπ)
∣

∣

∣ ≤ 1

2
sup |∇ξ|

ˆ

|y − x|2dπ.



Seek version with transportation cost localized to a ball B;

E(B) :=

ˆ

Ω(B)
|y − x|2dπ.

Replace ξ by I(B̄)ξ in definition of q, split difference into

I(Xt ∈ B̄)ξ(Xt)− I(x ∈ B̄)ξ(x) = I(Xt ∈ B̄)I(x ∈ B̄)(ξ(Xt)− ξ(x))

+ I(Xt ∈ B̄, x 6∈ B̄)ξ(Xt)− I(Xt 6∈ B̄, x ∈ B̄)ξ(x).

First contribution as before:

∣

∣

∣

ˆ 1

0
dt

ˆ

I(Xt ∈ B̄)I(x ∈ B̄)(ξ(Xt)− ξ(x)) · (y − x)dπ
∣

∣

∣

≤ sup
B̄

|∇ξ|
ˆ 1

0
dt

ˆ

I(Xt ∈ B̄)|Xt − x||y − x|dπ ≤ sup
B̄

|∇ξ|1
2
E(B̄).



Second contribution:

∣

∣

∣

ˆ 1

0
dt

ˆ

(

I(Xt ∈ B̄, x 6∈ B̄)ξ(Xt)

− I(Xt 6∈ B̄, x ∈ B̄)ξ(x)
)

· (y − x)dπ
∣

∣

∣

≤ sup
B

|ξ|
ˆ 1

0
dt

ˆ

|I(Xt ∈ B̄)− I(x ∈ B̄)||y − x|dπ.

Specify to a ball B̄ = B̄R with radius R and write |I(Xt ∈ B̄) −
I(x ∈ B̄)| = |I(R ≥ |Xt|) − I(R ≥ |x|)|. Hence integral in R is

estimated by ||Xt| − |x|| ≤ |Xt − x| to the effect of

ˆ R̄

0
dR sup

ξ

1

supB̄R
|ξ|

∣

∣

∣

ˆ 1

0
dt

ˆ

(

I(Xt ∈ B̄R, x 6∈ B̄R)ξ(Xt)

− I(Xt 6∈ B̄R, x ∈ B̄R)ξ(x)
)

· (y − x)dπ
∣

∣

∣ ≤ 1

2
E(BR̄).

We summarize these findings on the average-in-R estimate of a

dual norm of dq − (y − x)dπ in



Lemma 1.

ˆ R̄

0
dR sup

ξ

∣

∣

∣

´

B̄R
ξ(x) · (dq − (y − x)dπ)

∣

∣

∣

max{supB̄R |ξ|, R̄ supB̄R
|∇ξ|}

≤ E(BR̄).

We now comment on the regime in which Lemma 1 is not vacu-

ous. Note that the l. h. s. compares dq⌊B̄R to the marginal in x

of (y−x)dπ⌊(B̄R×R
d), in a norm that scales like the total varia-

tion (but is weaker more like the flat norm). Hence Lemma 1 is

meaningful if and only if
´ R̄
0 dR

´

B̄R×Rd
|y−x|dπ is small compared

to the r. h. s. that by definition dominates
´

BR̄×Rd
|y−x|2dπ. This

is the case if

|y − x| ≪ R̄ on average w. r. t. π⌊(BR̄ × R
d).

Loosely speaking, this means

transportation distance ≪ localization scale.



The flux q is close to its Helmholtz projection ∇u;
almost in total variation norm

From now on we need

λ = dx in BR̄.

In this case
ˆ

B̄×Rd
ζ(x, y)dπ =

ˆ

B
ζ(x,∇ψ(x))dx.

Hence expression in Lemma 1 turns into
ˆ

B̄×Rd
ξ(x) · (dq − (y − x)dπ) =

ˆ

B̄
ξ(x) · (dq − (∇ψ(x)− x)dx).

Note that by definition of Helmholtz projection on B (on L2(B,Rd))

we have H(∇ψ − id) = ∇ψ − id. Together with ∇udx⌊B = Hq⌊B̄
we have in terms of the Helmholtz projection (on distributions)

dq⌊B̄ −∇udx⌊B = (id−H)(dq⌊B̄ − (∇ψ − id)dx⌊B).



Note that like H, the “Leray projection” id − H is bounded in

the Hölder space C1,α(B̄,Rd) for α ∈ (0,1); more precisely, it is

uniformly in B bounded w. r. t. the norm

sup
B̄

|ξ|+R1+α sup
x,y∈B̄

|∇ξ(x)−∇ξ(y)|
|x− y|α

,

where R is the radius of B. We appeal to the embeddings

sup
B̄R

|ξ|+R sup
B̄R

|∇ξ| . above norm on BR . sup
B̄R

|ξ|+R2 sup
B̄R

|∇2ξ|.

Corollary 1. of Lemma 1

ˆ R̄

R̄
2

dR sup
ξ

∣

∣

∣

´

B̄R
ξ · (dq −∇uRdx)

∣

∣

∣

supB̄R
|ξ|+R2 supB̄R

|∇2ξ|
. E(BR̄).

Corollary 1 expresses closeness in a norm that is weaker than

the total variation norm; it is even weaker than the flat norm.



In particular, we cannot take ξ = I(B̂)e some some unit vector

e ∈ Rd and some ball B̂. However, we will obtain an estimate as if

we had control in the total variation norm, provided we average

in the radius r of such a ball B̂r. This follows from a more subtle

statement on the boundedness of the Leray projection:

ξrR := Leray projection of I(B̂r)e in BR

can be (not quite uniquely) written in form of

ξrR = I(B̂r)ξ
in
rR + I(BR)ξ

out
rR ,

where both ξ
in/out
rR are smooth provided B̂r is compactly con-

tained in BR. This allows us to apply Lemma 1 to
ˆ

B̂r
e · (dq −∇uRdx) =

ˆ

BR

ξrR · (dq − (∇ψ(x)− x)dx)

=

ˆ

Br
ξinrR · (dq − (∇ψ(x)− x)dx) +

ˆ

BR

ξoutrR · (dq − (∇ψ(x)− x)dx).



In order to quantify smoothness, fix center of B̂r ∈ BR̄
8

; then

dist(B̂r, B
c
R) ≥ R

4
as r ≤ R̄

8
and

R̄

2
≤ R ≤ R̄.

By translation invariance, center of B̂r fixed; by scaling invari-

ance, r = 1. Then ξ
in/out
R,r=1 converge as R ↑ ∞; hence smoothness

is uniform in R. This (informally) establishes the estimates

max{supBr |ξinrR|, r supBr |∇ξinrR|}
max{supBR |ξoutrR |, r supBR |∇ξoutrR |}







. 1.

Proposition 1.

ˆ R̄

R̄
2

dR

ˆ R̄
8

0
dr|
ˆ

B̂r
(dq −∇uRdx)| . R̄E(BR̄).



II. Optimal semidiscrete matching, heuristics, main result

Matching a law λ to its empirical measure µ

Scaling of mean-square Wasserstein distance W (λ, µ)

by Ajtai-Komlòs-Tusnàdy

Approximation by Helmholtz projection, small-scale divergence.

A cut-off on scales ≪ particle distance

Implementation by Ambrosio-Stra-Trevisan, on macroscopic scales

Heuristics by Carraciolo-Lucibello-Parisi-Sicuro,

on mesoscopic scales

Comparison of the Parisi-et-al. heuristics to ours

Heuristics made rigorous by Goldman-Huesmann-O.,

on mesoscopic scales



Matching a law λ to its empirical measure µ

Specify to λ(Rd) = 1, i. e. to a probability measure.

Given N ∈ N, draw Y1, · · · , YN ∈ R
d be N independent samples

distributed according to λ.

Consider µ := 1
N

∑N
n=1 δYn, “empirical measure”.

The probability measure µ on Rd is random.

As N ↑ ∞, µ weakly converges to λ, almost surely.

Monitor the (squared) Wasserstein distance

W2(λ, µ) := inf{
´

|y − x|2dπ |π admissible for λ, µ }.
“Semi-discrete matching”.



Scaling of mean-square Wasserstein distance W (λ, µ)

by Ajtai-Komlòs-Tusnàdy

Simplest case:

λ = uniform distribution on a cube QL of side length L.

Ignore probability normalization: λ = dx⌊QL;
use number density normalization: N = Ld ∈ N and µ =

∑N
n=1 δYn.

Monitor
√

E
1
NW

2(λ, µ)

= (mean-square) expected transportation distance per point.

Theorem 1 (Ajtai, Komlós, Tusnády ’84).

√

E
1

N
W2(λ, µ) ∼











1 for d > 2,√
lnN for d = 2,√
N for d = 1











Hence transportation distance ≪ system size (= L) for all d,

but transportation distance ∼ particle distance (= 1) iff d > 2.

Hence d = 2 is the critical dimension.



Approximation by Helmholtz projection

Consider the distributional Helmholtz projection on QL of µ−dx;
given by ∇udx⌊QL characterized through

ˆ

QL

∇ζ · ∇udx =

ˆ

QL

ζ(dµ− dx).

Informally, ∇u is solution of Neumann-Poisson problem

−△u = µ− dx in QL and ν · ∇u = 0 in ∂QL.

By Section 1
´

B×Rd
(y − x)dπ ≈

´

B∇udx for most balls B ⊂ QL
of (localization) radius R ≫ transportation distance ∼

√
lnN .

Ignoring contribution of scales .
√
lnN to macroscopic output

naively expect W2(λ, µ) =
´

|y − x|2dπ ≈
´

QL
|∇u|2dx;

use in averaged form of 1
NW

2(λ, µ) ≈ 1
|QL|
´

QL
|∇u|2dx.



Small scale divergence in d ≥ 2

However, since points have capacity zero in d ≥ 2, meaning that

Dirac δ 6∈ H−1(QL), we have
´

QL
|∇u|2dx=:

´

QL
||∇|−1(µ−dx)|2dx

= +∞.

Need to cut off scales .
√
lnN ; via spectral implementation:

L2(QL)-normalized eigenfunctions/-values of Neumann-Laplacian:

em(x) := (2L)
d
2
∏d
i=1 cos(

πmixi
L ), λm = (

π|m|
L )2 for m ∈ Nd0 − {0}.

Plancherel:
´

QL
|∇u|2 =

∑

m6=0
1
λm

(

´

QL
em(dµ− dx)

)2
.

Second moments of shot noise µ− dx as if it were white noise:

E(
´

QL
em(dµ− dx))2 =

´

QL
e2mdx = 1.

We recover E
´

QL
|∇u|2 =

∑

m6=0(
L

π|m|)
2 = +∞ iff d ≥ 2.



Implementation by Ambrosio-Stra-Trevisan,

on macroscopic scale

Define the cut-off version ∇ū of ∇u
by removing the wavelengths

π|m|
L >

√
lnN ,

i. e. by projecting on the wave numbers |m| ≤ L
√
lnN
π .

Get E
1

|QL|
´

QL
|∇ū|2dx =

∑

m∈N2
0, 0<|m|≤L

√
lnN
π

( 1
π|m|)

2

≈ 1
4
2π
π2

ln L
√
lnN
π ≈ 1

4π lnN since L =
√
N .

Theorem 2 (Ambrosio, Stra, Trevisan ’19). For d = 2

E
1

N
W2(λ, µ) ≈ 1

4π
lnN for N ≫ 1.



Heuristics by Carraciolo-Lucibello-Parisi-Sicuro ’14,

on mesoscopic level

Recall convex duality from Section 1:

∃ convex φ : Rd → (−∞,∞] such that suppπ ⊂ ∂φ.

Assume momentarily that suppµ = QL and µ ≪ dy.

Then
´

Rd×QL ζ(x, y)dπ =
´

QL
ζ(∇φ(y), y)dµ,

by admissibility of π
´

QL
ζ(x)dx =

´

QL
ζ(∇φ(y))dµ.

Assume momentarily ∇φ is diffeomorphism of QL.

Then
´

QL
ζ(∇φ(y))detD2φ(y)dy =

´

QL
ζ(∇φ(y))dµdydy.

Get Monge-Ampère equation detD2φ = dµ
dy .

Expect Section 1: ∇φ ≈ id

when averaged over scales ≫ transportation distance.

Writing ∇v := ∇φ− id, naively expect detD2φ ≈ 1+ trD2v

when averaged over scales ≫ transportation distance.

To leading order, ∇v would be characterized by trD2v = dµ
dy − 1.



Comparison of the Parisi-et-al. heuristics to ours

Parisi et al.’s heuristics predicts (x− y)dπ ≈ ∇v
when averaged on scales ≫ transportation distance

where △vdy = µ− dy.

Our heuristics predicts (y − x)dπ ≈ q ≈ ∇u
when averaged on scales ≫ transportation distance

where −△udx= µ− dx.

The two predictions are identical.

The two heuristics reflect the two faces of the Laplace operator:

divergence-form −∇ · ∇u vs. non-divergence form trD2v.

Also reflect the two faces of the Monge-Ampère equation:

Euler-Lagrange equation of inf{
´

|y − x|2dπ |πadmissible }
vs. fully non-linear equation detD2φ = dµ

dy (Caffarelli, Figalli).



Heuristics made rigorous by Goldman-Huesmann-O.

Mesoscopic vs. macroscopic closeness of (y − x)dπ to ∇u.
“Mesoscopic” means ≫ particle distance,

“macroscopic” means ≪ system size.

As before, λ = dx⌊QL. More generally as before:

(deterministic) µ with suppµ ⊂ QL and µ(QL) = |QL|
Monitor closeness of µ to Lebesgue measure dy on set B ⊂ Rd:

D(B) := W2(µ⌊B, µ(B)

|B| dy⌊B) + |B|R2(
µ(B)

|B| − 1)2.

Back to µ =
∑N
n=1 δYn with N = Ld and Yn’s indep. and uniform in QL.

Consider all concentric balls B = BR ⊂ QL, center = origin. Have

for d = 2 by Ajtai et al. with overwhelming probability

D(QL) ∼ |QL| lnL and D(BR) ∼ |BR| lnR for 1 ≪ R.



Convenient to introduce a rate functional T : [0,∞) → [0,∞),

called sublinear iff ∀0 < θ ≪ 1 ∀R θT(R) ≪ T(θR).

Recall: π is the minimizer of {
´

|y−x|2dπ |π admissible for λ, µ },
∇udx⌊QL is distributional Helmholtz projection on QL of µ− dx⌊QL.

Theorem 3 (Goldman, Huesmann, O. ’21). If µ is such that

there exists a sublinear rate function T and a radius r̄ ≤ L
4 with

D(QL) ≤ |QL|T2(L) and D(B) ≤ |BR|T2(R) for r̄ ≤ R ≤ L

4

then π and ∇u are related by

1

r̄

ˆ r̄

r̄
2

dr
∣

∣

∣

1

π(Rd ×Br)

ˆ

Rd×Br
(y − x)dπ − 1

|Br|

ˆ

Br
∇udx

∣

∣

∣ .

ˆ L

r̄

dr

r

T2(r)

r
.



Theorem 4 (Goldman, Huesmann, O. ’21). If µ is such that there exists a

sublinear rate function T and a radius r̄ ≤ L
4
with

D(QL) ≤ |QL|T 2(L) and D(B) ≤ |BR|T 2(R) for r̄ ≤ R ≤ L

4

then π and ∇u are related by

1

r̄

ˆ r̄

r̄

2

dr
∣

∣

1

π(Rd × Br)

ˆ

Rd×Br

(y − x)dπ − 1

|Br|

ˆ

Br

∇udx
∣

∣ .

ˆ L

r̄

dr

r

T 2(r)

r
.

Displacement y − x π-averaged over Rd ×Br
≈ electrostatic field ∇u dx-averaged over x ∈ Br.

R. h. s. is average over radii r ∼ r̄, cf. Proposition 1.

For empirical measure in d = 2:

r̄ ∼ 1 and T(r) ∼
√
ln r (which clearly is sublinear),

so that l. h. s. . 1 = particle distance.

Hence on scales ∼ particle distance, have

displacement = electrostatic field +O(particle distance).

Best possible closeness.



III. Proof of Theorem 4

Most involved ingredient: a large-scale regularity result for π

expressed in terms of shifts b

Relating a shift b to an average flux increment d(q − q̂):

Lemma 1 =⇒ Lemma 2

Optimal shifts bk at geometrically decreasing radii R̄k

Fluxes qk; relate shift increments bk − bk−1

to flux increments qk−1 − qk by Lemma 2

Fields ∇uk; relate fluxes qk to fields ∇uk by Proposition 1

Usage of mean-value property to rewrite

field increments ∇uk−1 −∇uk amenable to telescoping

Telescoping to relate shift bK to field increment ∇u−∇uK
Last meter: relate field ∇uK to displacement (y − x)dπ − bK



Most involved ingredient: a large-scale regularity result

for π expressed in terms of shifts b

To every shift vector b ∈ R
d we associate the plan πb

πb is push forward of π under (x̂, ŷ) = (x+ b, y).

On level of trajectories X = shear of the graph {(t, Xt)}.

Involved ingredient for Theorem 4 = large-scale regularity result:

For sublinear rate T , bound on µ transmit to π modulo shift:

Theorem 5 (GHO ’21). If ∃ sublinear T and a radius r̄ ≤ L
4 with

D(QL) ≤ |QL|T2(L) and D(B) ≤ |BR|T2(R) for r̄ ≤ R ≤ L

4

then

inf
b∈Rd

ˆ

Ω(BR)
|ŷ − x̂|2dπb . |BR|T2(R) for r̄ ≤ R ≤ L

4
.



Relating a shift b to an average flux increment d(q − q̂):

Lemma 1 =⇒ Lemma 2

Recall Lagrangian displacement (y − x)dπ ≈ Eulerian flux q.

Lemma 1 was established for general λ and µ.

Hence we may exchange the roles of x and y.

Both displacement and flux change sign under, so that
ˆ r̄

0
dr

∣

∣

∣

ˆ

Br
dq −

ˆ

Rd×Br
(y − x)dπ

∣

∣

∣ ≤ E(Br̄).

Assume that π̂ is related to original π by a shift b ∈ Rd:

π̂ is push forward of π under (x̂, ŷ) = (x+ b, y).

Assume that we control both Ê(Br̄) and E(Br̄); analogously

ˆ r̄

0
dr

∣

∣

∣

ˆ

Br
dq̂ −

ˆ

Rd×Br
(ŷ − x̂)dπ̂

∣

∣

∣ ≤ Ê(Br̄).



By the triangle inequality
ˆ r̄

0
dr

∣

∣

∣

ˆ

Br
d(q − q̂)−

ˆ

Rd×Br
bdπ

∣

∣

∣ ≤ (E + Ê)(Br̄).

By the admissibility of π
ˆ r̄

0
dr

∣

∣

∣

ˆ

Br
d(q − q̂)− µ(Br)b

∣

∣

∣ ≤ (E + Ê)(Br̄).

By µ(Br) ≈ |Br| informally

b ≈ 1

|Br|

ˆ

Br
d(q − q̂) on average in r ≤ r̄

in the rigorous sense of

Lemma 2. Provided D(Br̄) ≪ r̄d+2,

ˆ r̄

0
dr

∣

∣

∣|Br|b−
ˆ

Br
d(q − q̂)

∣

∣

∣ / (E + Ê)(Br̄).



Optimal shifts bk at geometrically decreasing radii R̄k

Fix (sufficiently spaced) geometrically decreasing radii {R̄k}k=1,··· ,K
connecting macroscopic R̄1 ∼ L to microscopic R̄K = r̄.

Theorem 5: ∀ k ∈ {1, · · · ,K} ∃ bk ∈ Rd s. t.

πk := πbk satisfies Ek :=

ˆ

Ω(Bk)
|y − x|2dπk . |Bk|T2(Rk).

Convenient to extend these definitions to k = 0 by setting

R̄0 := L, B0 := QL, b0 = 0, π0 := π, E0 :=

ˆ

|y − x|2dπ.

Trivially have the analogous estimate

E0 = W2(λ, µ) ≤ D(QL) ≤ |QL|T2(L) = |B0|T2(R̄0).



Fluxes qk; relate shift increments bk − bk−1

to flux increments qk−1 − qk by Lemma 2

For k = 0, · · · ,K, associate fluxes qk to plans πk:
ˆ

ξ · dqk =

ˆ

ξ(x) · (y − x)dπk.

For k = 1, · · · ,K, shift increments ≈ averages of flux increments:

bk − bk−1 ≈ 1

|Br|

ˆ

Br
d(qk−1 − qk) on average in r ≤ R̄k.

By this informal statement we mean the estimate

2

R̄k

ˆ R̄k

R̄k
2

dr
∣

∣

∣(bk − bk−1)−
1

|Br|

ˆ

Br
d(qk−1 − qk)

∣

∣

∣ .
T2(R̄k−1)

Rk−1
+
T2(R̄k)

R̄k
.

This relies on definition of πk in incremental version of

πk is push forward of πk−1 under (x̂, ŷ) = (x+ bk − bk−1, y),

to which we apply Lemma 2; estimate of r. h. s. by Theorem 5.



Fields ∇uk; relate fluxes qk to fields ∇uk by Proposition 1

For any k = 1, · · · ,K, introduce electrostatic fields ∇uk,r:

∇uk,rdx⌊Br := distributional Helmholtz projection on B̄r of qk⌊B̄r.
Automatically,

ˆ

Br
dqk =

ˆ

Br
∇uk,rdx for a. e. r ≤ R̄k.

Claim separately for k = 2, · · · ,K and k = 1
ˆ

Br
dqk−1 ≈

ˆ

Br
∇uk−1,Rdx on average in r ≤ R̄k, R ≤ R̄k−1,

ˆ

Br
dq0 ≈

ˆ

Br
∇udx on average in r ≤ R̄1,

where we recall

∇udx⌊QL := distributional Helmholtz projection on QL of q0.



Again, the informal
ˆ

Br
dqk−1 ≈

ˆ

Br
∇uk−1,Rdx on average in r ≤ R̄k, R ≤ R̄k−1,

ˆ

Br
dq0 ≈

ˆ

Br
∇udx on average in r ≤ R̄1.

are supposed to mean

2

R̄k−1

ˆ R̄k−1

R̄k−1
2

dR
2

R̄k

ˆ R̄k

Rk
2

dr
∣

∣

∣

1

|Br|

ˆ

Br
(dqk−1 −∇uk−1,Rdx)

∣

∣

∣ .
T2(R̄k−1)

R̄k−1
,

2

R̄1

ˆ R̄1

R̄1
2

dr
∣

∣

∣

1

|Br|

ˆ

Br
(dq0 −∇udx)

∣

∣

∣ .
T2(R̄0)

R̄0
.



Usage of mean-value property to rewrite

field increments ∇uk−1 −∇uk amenable to telescoping

Crucial identity for telescoping:

1

|Br|

ˆ

Br
(∇uk−1,R −∇uk,r)dx

=
1

|Br|

ˆ

Br
(∇u−∇uk,r)dx− 1

|Br|

ˆ

Br
(∇u−∇uk−1,R)dx

!
=

1

|Br|

ˆ

Br
(∇u−∇uk,r)dx− 1

|BR|

ˆ

BR

(∇u−∇uk−1,R)dx

Definitions of ∇u and ∇uk−1,R

=⇒ ∇u−∇uk−1,R is (distributionally) divergence-free in BR.

Hence ∇u−∇uk−1,R is (componentwise) harmonic

=⇒ satisfies mean-value property:

1

|Br|

ˆ

Br
(∇u−∇uk−1,R)dx =

1

|BR|

ˆ

BR

(∇u−∇uk−1,R)dx.



Telescoping to relate shift bK to field increment ∇u−∇uK
Claim

bK ≈ 1

|Br|

ˆ

Br
(∇u−∇uK,r)dx on average in r ≤ RK

in sense of
2

r̄

ˆ r̄

r̄

2

dr
∣

∣bK − 1

|Br|

ˆ

Br

(∇u−∇uK,r)dx
∣

∣ .
K
∑

k=0

T 2(R̄k)

R̄k
.

Insert the two flux-field relations
ˆ

Br
dqk =

ˆ

Br
∇uk,rdx and

ˆ

Br
dqk−1 ≈

ˆ

Br
∇uk−1,Rdx

(all on average in r ≤ R̄k, R ≤ R̄k−1) into incremental shift-flux relation

bk − bk−1 ≈ 1

|Br|

ˆ

Br
d(qk−1 − qk),

and use mean-field identity to obtain telescoping relation

bk − bk−1 ≈ 1

|Br|

ˆ

Br
(∇u−∇uk,r)dx− 1

|BR|

ˆ

BR

(∇u−∇uk−1,R)dx.



Telescoping relation holds for k = 2, · · · ,K.

For k = 1, appeal instead to field-flux relation
ˆ

Br
dq0 ≈

ˆ

Br
∇udx on average in r ≤ R̄1,

and to b0 = 0 to get

b1 ≈ 1

|Br|

ˆ

Br
(∇u−∇u1,r)dx on average in r ≤ R̄1.

Insert this into sum over telescoping relation

bk − bk−1 ≈ 1

|Br|

ˆ

Br
(∇u−∇uk,r)dx− 1

|BR|

ˆ

BR

(∇u−∇uk−1,R)dx

on average in r ≤ R̄k, R ≤ R̄k−1

to get desired

bK ≈ 1

|Br|

ˆ

Br
(∇u−∇uK,r)dx on average in r ≤ RK



Last meter: relate field ∇uK to displacement (y−x)dπ− bK

Remains to show the displacement-field relation on the “last meter”

1

π(Rd ×Br)

ˆ

Rd×Br
(y − x)dπ − bK ≈ 1

|Br|

ˆ

Br
∇uK,rdx on average in r ≤ RK

since together with the previously established shift-field relation

bK ≈ 1

|Br|

ˆ

Br
(∇u−∇uK,r)dx on average in r ≤ RK

this implies the desired displacement-field relation

1

π(Rd ×Br)

ˆ

Rd×Br
(y − x)dπ ≈ 1

|Br|

ˆ

Br
∇udx on average in r ≤ RK.

This is informal for the statement in Theorem 4

2

r̄

ˆ r̄

r̄
2

dr
∣

∣

∣

1

π(Rd ×Br)

ˆ

Rd×Br
(y − x)dπ − 1

|Br|

ˆ

Br
∇udx

∣

∣

∣ .
K
∑

k=0

T2(R̄k)

R̄k
.



By definition of π̂ := πK,

1

π(Rd ×Br)

ˆ

Rd×Br
(y − x)dπ+ bK =

1

πK(Rd ×Br)

ˆ

Rd×Br
(ŷ − x̂)dπ̂.

Lemma 1: Lagrangian displacements ≈ Eulerian fluxes,

integral of fluxes = integral of fields ∇ûr := ∇uK,r:
ˆ r̄

0
dr

∣

∣

∣

ˆ

Rd×Br
(ŷ − x̂)dπ̂ −

ˆ

Br
∇ûr

∣

∣

∣ ≤ Ê(Br̄).

Need to divide the first integrand contribution by πK(Rd × Br)

and the second one by |Br|.
This relies on

r|π̂(Rd × Br)− |Br|| /
√

|Br̄|D(Br̄) on average in r ≤ r̄

and

∣

∣

ˆ

Rd×Br

(ŷ − x̂)dπ̂
∣

∣ ≤
ˆ

Ω(Br)

|ŷ − x̂|dπ̂ /
√

|Br̄|Ê(Br̄) on average in r ≤ r̄.


