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I. Approximating optimal transportation by electrostatics

Kantorowicz’ formulation of Monge's optimal transportation;
direct method of calculus of variations

Kantorowicz potential and Brenier's map; convex duality
Eulerian perspective: trajectories X and flux q
Entering and exiting times o, and measures f,g for a ball B

Electrostatics: the Helmholtz projection Vu of ¢ on B,
some regularity theory

Relating the Eulerian flux g
to the Lagrangian displacement (y — x)dm, locally

The flux g is close to its Helmholtz projection Vu,
almost in total variation norm



Kantorowicz’ formulation of Monge’s optimal transp.,
direct method of calculus of variations

Given: (locally finite Borel) measures
A>0o0onRY35z and u >0 on RY >y,

A measure w > 0 on R? x R? 5 (z,y) is “admissible”
iff it has marginals A and u:

/C(x)dw - /Cd)\ and /C(y)dw - /Cdu.

Provided mass is finite and equal
A(RY) = u(Rd> € (0, 00),

the product measure m = ,\(Rd)
Note that for any admissible =

AR u = (Rd))‘@)“ IS admissible.

r(R% x RY) = A(R%) = u(R?) < oo.



Consider squared transport distance and

minimize /|y—:13|2d7r among all = admissible.

Provided A, u have finite second moments,

/|:U|2d)\ < oo and /|y|2d,u < 00,

any admissible w satisfies (monotone convergence)

1
> [ o= vlan < [ 2P + Iyl = [ fol2ax+ [ [y < oo.

In particular, infimum € [0,00), and any minimizing sequence of
7's is tight, so that marginals are preserved in the limit. Since
functional is lower semi-continuous (Fatou), get minimizer by
direct method. We fix a minimizer .



Kantorowicz potential and Brenier’'s map; convex duality

By convex duality Jconvex function ¢: R% — (—o0, 4+00]
(not = 4+o0) such that

suppm C 0,
where the subgradient 9y C R x R? is defined by
(z,y) €Y <= V o eRMY(E)>p@)+ (@' —=) v

Informally suppn is d-dimensional, as opposed to 2d-dimensional
for product measure. In particular, we have

suppA C {z |3y (x,y) € 0y } =: D(v).



Suppose 3 an (open) ball B ¢ R? such that

B C suppA.

Then have B C D(¢) C {x |y (x) < oo }. As convex function, i is
locally bounded and locally Lipschitz on B. As locally Lipschitz
function, ¢ is Lebesgue-almost everywhere differentiable on B.
If ¢ is differentiable in x € B, then by definition {y|(z,y) € 0¢ }
= {V¢y(x)}. Hence there exists a Lebesgue null set N C B such
that

(z,y) eodpandze B— N — y=Vu(z).

If we suppose in addition

AL dron B

then we obtain

/BdeC(SU,y)dW:/Bg(a:,qu(g;))d)\.



Eulerian perspective: trajectories X and flux g

We identify pairs (z,y) € R? x R?
with straight trajectories X : [0, 1] — R% via (the Borel map)

X;=ty+(1—t)x sothat X =y —=z.

et the vectorial Borel measure g be defined through

/5-dq=//01£<xt>  Xdtd,

where ¢ is a bounded smooth vector field on R%. Note ¢ has finite
total variation since integrand < sup|[{| times |y — z| < |z| 4+ |y|
< 143z + 51yl



Applying definition to gradient fields & = V({, appealing to the
chain rule V¢(X;) - X = %C(Xt), and to fol V(X)) - Xdt = ((y) —
C(x), we obtain by the admissibility of =
/Vc-dqz /C(d,u—d)\).
Incidentally, this means
—V -dg = dpu — d\  distributionally.

In view of this we think of ¢ as a flux.



Entering and exiting times o, and measures f,g for a ball

Given a closed ball B c RY,
define £25 to be the set of trajectories that spend time in B:

short _
Qp = Q:={X=(z,y)|3te€[0,1] Xy € B}.

Define the two Borel functions oz, 75 or short o,7: 2 — [0, 1]
to be the times X enters/exits B:
o(X) := min{t € [0,1]|X; € B}
< max{t € [0,1]|X; € B} =: 7(X).



Define the two Borel measures fz,95 > 0, or short f,g,
where the trajectories enter or exit:

[ car= /Q gy (Kedar and [ cds = /Q g S

well-defined because of 7(R? x R?) < oo.

Since by definition,
0(X)>0 <<= X,x)€0B
(X)) <1l «— XT(X) € 0B

we have

f,g are supported on O0B.



Claim
V(-dg = du — d)\) + dg — df).
/_ G- dq /_C( Y ) /(‘3 ¢(dg — df)

Apply definition of ¢ to £ = I(B)V¢,
use [y E(X¢)-Xdt = [T VC(Xe) Xdt = (X (x))—C(Xyx))- Since

o(X)=0 < z€B and 7(X)=1 < y¢€ B,
we get

1
/O £(Xy) - Xdt = I(y € B)((y) — I(z € B)(x)
+ I(r(X) < 1)C(X, (xy) = I(0(X) > 0)C(X, (x)-

Integrate against w, use admissibility of = and definition of f,g.

Incidentally,

normal trace of gon 0B = g— f
provided  [¢|(0B) = A(0B) = u(9B) = 0.



Electrostatics: the Helmholtz projection Vu of ¢ on B;
some regularity theory

Helmholtz projection Hp = H on B is L?(B,R%)-orthogonal pro-
jection onto closed subspace of gradient fields. By singular in-
tegral theory, if € is smooth on B, then H¢ is smooth on B, and
the C*(B)-norm of H¢ is controlled by the CkT1(B)-norm of &.

Moreover, H is characterized by how it acts on smooth fields,
namely

HV (¢ = V(¢ for smooth ¢ on B,

HE =0 for smooth divergence-free £ supported in B.

Hence to every distribution f on B, we can associate its Helmholtz
projection Hf by duality via Hf.€ = f'HE. It is characterized by

HIV = fV(¢ for smooth ¢ on B,
Hf.E =0 for smooth divergence-free £ supported in B.



As finite measure, f = q|B is a distribution.
Claim: ‘Hf is absolutely continuous w. r. t. Lebesgue:

Hq|B < dz|B.

Enough to construct a ug = u € HH1(B) such that

/ V(- Vudxr = /_ V( - dq,
B B
then we have Hq|B = Vudxz|B. Enough to establish

/BVC-Vudw=/BC(du—d>\)+/83C(dg—df)-



Consider [5¢(dp —dX\) + [35¢(dg — df) as a linear form in (.
It is bounded w. r. t. supg|¢|; it vanishes for constant (.
By Sobolev embedding

() O - ([ roema)?
i S ([, 9Pa)

form is bounded w. r. t. V¢ € LP(B,R%) for p € (d, o). By duality
it can be represented by fB V(- qdx for some q € Lp/(B,IRid) with
p € (1,%). Then Vu is the Helmholtz projection of ¢, which
by singular integral theory is bounded in Lp/(B,Rd). In particular
uw e HYY' (B) c HYY(B).

Incidentally, u satisfies the Poisson equation with Neumann b. c.:

—Au=pup—AXinB and v-Vu=v-qonodB in a weak sense.



Relating the Eulerian flux q
to the Lagrangian displacement (y — x)dm, locally

From definition of q
/ é(e) - (dq — (y — z)dr)
— / " / ((ty+ (1 = ) — £@)) - (y — w)dr
O b

we obtain the inequality

[ 6@ (= )am)| < sup vel [ it [ty afar,

which entails

|/§(33) - (dq — (’y—x)dw)’ < %SUD|V§|/|y—x\2d7T.



Seek version with transportation cost |localized to a ball B;
E(B) := / ly — z|%dnr.
Q(B)
Replace ¢ by I(B)¢ in definition of g, split difference into

I(X: € B)¢(Xy) — I(z € B)¢(z) = I(Xt € B)I(z € B)(&(Xy) — &(=))
+ (X € B,z ¢ B)§(Xy) — (Xt & B,z € B)¢(z).

First contribution as before:
1
e [ 1G5 € By € BY(E(XD) — &) - (v — )i

1 _ 1
< sup \vg\/ dt/I(Xt € B)|X: — ally — oldr < sup [VE| E(B).
B 0 B



Second contribution:

[ [ (10 B g By
~I(Xy ¢ B,z € B)E(x)) - (y — 2)dm
1 — —
< sup |g|/O dt/ 1(X; € B) — I(z € B)|ly — |dn.

Specify to a ball B = Bp with radius R and write |I(X; € B) —
I(x € B)] = [I(R > |X¢]) — I(R > |z|)|]. Hence integral in R is
estimated by || X¢| — |z|| < | Xt — x| to the effect of

R 1
/o dR sup 1 |§||/0 dt/(I(XtEBR,xQER)f(Xt)

5 SUDBR
~ 10X ¢ B, v € Bp)@)) - (v — 2)dn| < SB(Bp).

We summarize these findings on the average-in-R estimate of a
dual norm of dg — (y — x)dm in




Lemma 1.

R . (dg — (y — z)d
/ R sun B €@) - (da — (g — 2)dm) BN
0 ¢ max{supg, [{], Rsupg, |VE[}

We now comment on the regime in which Lemma 1 is not vacu-
ous. Note that the |. h. s. compares quBR to the marginal in
of (y—xz)dr|(Br xR%), in a norm that scales like the total varia-
tion (but is weaker more like the flat norm). Hence Lemma 1 is

meaningful if and only if ff”deBRde |y — z|dm is small compared

to the r. h. s. that by definition dominates fBéde ly—z|?dr. This
is the case if

y —z| < R on average w. r. t. 7|(Bs x R%).

Loosely speaking, this means

transportation distance < localization scale.



The flux ¢q is close to its Helmholtz projection Vu;
almost in total variation norm

From now on we need
A = dx in Bf_{'
In this case

/_XRdC(x,y)dw=/Bc(x,v¢(x))da;.

B
Hence expression in Lemma 1 turns into

/_ §(x) - (dg — (y —x)dm) = / §(x) - (dg — (Vy(x) — z)dz).
BxRd B

Note that by definition of Helmholtz projection on B (on L2(B,R%))
we have H(Vy —id) = Vo — id. Together with Vudx|B = Hq|B
we have in terms of the Helmholtz projection (on distributions)

dq|B — Vudz|B = (id — H)(dq| B — (V¥ — id)dz | B).



Note that like H, the “Leray projection” id — H is bounded in
the HOlder space Cl’o‘(B,Rd) for a« € (0,1); more precisely, it is
uniformly in B bounded w. r. t. the norm

V —V
B z,ycB |z — y|@
where R is the radius of B. We appeal to the embeddings

sup [¢] + Rsup |V¢| < above norm on By < sup|¢| 4+ R? sup |[V2¢|.
Bp Bp Bp Bp

Corollary 1.of Lemma 1

/R /B, & (dg — Vugdz)

_ dRsup S E(Bg).

1 T supg, el + B2 supg, [92¢]

Corollary 1 expresses closeness in a norm that is weaker than
the total variation norm: it is even weaker than the flat norm.



In particular, we cannot take ¢ = I(B)e some some unit vector
e € RY and some ball B. However, we will obtain an estimate as if
we had control in the total variation norm, provided we average
in the radius r of such a ball B,. This follows from a more subtle
statement on the boundedness of the Leray projection:

¢.p = Leray projection of I(By)e in Bp
can be (not quite uniquely) written in form of

& = I(Br)E" + I(BR)ESH,

where both gm/OUt are smooth provided B, is compactly con-

tained in Br. This allows us to apply Lemma 1 to
/A e - (dg — Vupdz) = / £+ (dg — (V9 (z) — x)dx)
— / €n . (dg — (Vi(x) — o)da) + / €% (dg — (Vip(z) — z)dz).



In order to quantify smoothness, fix center of B, € Bg; then

_ R R
dist(Br, Bg) > " as r< s

By translation invariance, center of B, fixed:; by scaling invari-

ance, r=1. Then 53%0_1 converge as R 1T oo; hence smoothness

is uniform in R. This (informally) establishes the estimates
max{supp, |£Z |, T‘SUIDBT|V§Z [} <1
max{supp,, [€2%|, 7 sup g, [VEXH|}

Proposition 1.

B R
/_ dR/8 dr|/ (dg — Vupdz)| S RE(Bp).
£ 0 B,

2



II. Optimal semidiscrete matching, heuristics, main result
Matching a law A to its empirical measure pu

Scaling of mean-square Wasserstein distance W (A, u)
by Ajtai-Komlos-Tusnady

Approximation by Helmholtz projection, small-scale divergence.
A cut-off on scales < particle distance
Implementation by Ambrosio-Stra-Trevisan, on macroscopic scales

Heuristics by Carraciolo-Lucibello-Parisi-Sicuro,
ON MeSOoScopic scales

Comparison of the Parisi-et-al. heuristics to ours

Heuristics made rigorous by Goldman-Huesmann-O.,
ON MesSoSscopic scales



Matching a law )\ to its empirical measure u

Specify to A(RY) =1, i. e. to a probability measure.

Given N € N, draw Yi,---,Yy € R? be N independent samples
distributed according to A.

Consider u:= 1+ >N_, 8y, “empirical measure”.

The probability measure p on R? is random.

As N 1 oo, u weakly converges to A, almost surely.
Monitor the (squared) Wasserstein distance
W2\ p) :=inf{ [ |y — x|?dn | = admissible for \, 1 }.
“Semi-discrete matching’ .



Scaling of mean-square Wasserstein distance W (\, )
by Ajtai-Komlos-Tusnady

Simplest case:

A = uniform distribution on a cube @ of side length L.
Ignore probability normalization: A\ = dz|Qg;

use number density normalization: N = L% € Nand = YN_; 6y, .

Monitor /E4-W?2(X, 1)
= (mean-square) expected transportation distance per point.

Theorem 1 (Ajtai, Komldés, Tusnady '84).

] ford > 2,
\/IENWQ(A, 1) ~ \/In N ford =2,
VN ford=1

Hence transportation distance <« system size (= L) for all d,
but transportation distance ~ particle distance (= 1) iffd > 2.
Hence d = 2 is the critical dimension.



Approximation by Helmholtz projection

Consider the distributional Helmholtz projection on @, of u—dx;
given by Vudx|Q characterized through

V(- Vudx = C(dp — dx).
QL QL

Informally, Vu is solution of Neumann-Poisson problem

—Au=p—drin@Qy and v -Vu=0Iin0Qy.

By Section 1 [5 pi(y —x)dn = [5Vudz for most balls B C Qy,
of (localization) radius R > transportation distance ~ v/In N.
Ignoring contribution of scales < v/In N to macroscopic output
naively expect W2\, u) = [ |y — z|?dr =~ Jo, Vu|?dz;

: 1172 ~ _1 2
use in averaged form of LTW=<(\,pu) = meL‘V,M dzx.



Small scale divergence in d > 2

However, since points have capacity zero in d > 2, meaning that
Diracé ¢ H-N(Qr), we have [ |Vul?dz =: [ |[V|71(u—dz)|?dz
= —+00.

Need to cut off scales < +/In N; via spectral implementation:
L2(Q1)- normalized eigenfunctions/-values of Neumann-Laplacian:

em(z) = (2)2[[%_; cos(%), Ay = (Z)2 for m e N — {0}

Plancherel: [, |Vul? = Yo 5= Jo, em(dp — d:z;)) .
Second moments of shot noise u — dx as if it were white noise:

E(fQ em(dp — dx))? = fQ e2dr = 1.
We recover E [5 [Vul® = 3 p20(

‘)2—-|—oo iff d > 2.

w|m



Implementation by Ambrosio-Stra-Trevisan,
OoNn Macroscopic scale

Define the cut-off version Vu of Vu
by removing the wavelengths % > vVINN,
i. e. by projecting on the wave numbers |m| < L—VJT“N

1 _o 1 \2
Get IE|QL\ fQL V| =da ZmENg, O<|m|§w(ﬂ|m|)

~ 325 In B0~ EInN since L= /N
Theorem 2 (Ambrosio, Stra, Trevisan '19). For d = 2

1 1
E-W2(\u)~—InN forN > 1.
N 41




Heuristics by Carraciolo-Lucibello-Parisi-Sicuro 14,
on mesoscopic level

Recall convex duality from Section 1:
J convex ¢: RY — (—oo, 0] such that suppmr C 8.

Assume momentarily that suppu = @7 and u < dy.

Then  Jpayg, (@ y)dr = o C(Vo(y),y)dp,
by adm|SS|b|I|ty of m fQ Cj(:p)da; = fQ C(Vo(y))du.

Assume momentarily V¢ is diffeomorphism of Q..

Then [, ¢(Vo(y))detD2¢(y)dy = [, <<V¢(y>>§—gdy.

Get Monge-Ampere equation detD?2¢ = dy

Expect Section 1: V¢ =~ id

when averaged over scales > transportation distance.
Writing Vv := V¢ — id, naively expect detD?¢ ~ 1 + trD?v
when averaged over scales > transportation distance.

To leading order, Vv would be characterized by trD?y = dpp _

dy

1.



Comparison of the Parisi-et-al. heuristics to ours

Parisi et al.’s heuristics predicts (x — y)dm ~ Vv
when averaged on scales > transportation distance
where Awvdy = p — dy.

Our heuristics predicts (y — z)dm ~ g ~ Vu

when averaged on scales > transportation distance
where —Audr = p — dzx.

The two predictions are identical.

The two heuristics reflect the two faces of the Laplace operator:
divergence-form —V - Vu vs. non-divergence form trD?v.

Also reflect the two faces of the Monge-Ampére equation:
Euler-Lagrange equation of inf{ [ |y — z|?dr | radmissible }
vs. fully non-linear equation detD?¢ = Z—Z (Caffarelli, Figalli).



Heuristics made rigorous by Goldman-Huesmann-0O.

Mesoscopic vs. macroscopic closeness of (y — x)dr to Vu.
“Mesoscopic” means > particle distance,
“macroscopic’” means < system size.

As before, A = dz|Q. More generally as before:
(deterministic) p with suppu C Qr and u(Qyr) = |Qy)l

Monitor closeness of u to Lebesgue measure dy on set B C RY:

p(B)
| B

Back to u = nyzl dy, with N = L% and Y;'s indep. and uniform in Qy.
Consider all concentric balls B = Br C )1, center = origin. Have
for d = 2 by Ajtai et al. with overwhelming probability

M) 4By + BIR2(E) 12

N 2
D(B) := W2(u|B, B

D(QL) ~ |QL| In L, and D(BR) ~ |BR| In R for 1 <« R.



Convenient to introduce a rate functional T: [0,00) — [0, c0),
called sublinear iff VO < 0 < 1 VR 0T(R) < T(OR).

Recall: 7 is the minimizer of { [ |y —x|?dr | ® admissible for X, i },
Vudx|Qp, is distributional Helmholtz projection on Q; of u—dx|Qjy,.

Theorem 3 (Goldman, Huesmann, O. '21). If u is such that
there exists a sublinear rate function T’ and a radius r < % with

D(Qr) < 1QrIT?(L) and D(B) < |Bg|T?(R) for7 < R < g

then = and Vu are related by

rJI  In(R? x Byr) JrixB, |Br| JB,

17 1 1 LdarT?
_/ dr} (y — x)dm — Vuda:| < /_ T (T)
> T



Theorem 4 (Goldman, Huesmann, O. '21). If u is such that there exists a
sublinear rate function T and a radius r < % with

L
D(Qr) <|Qu|T*(L) and D(B) < |Bg|T*(R) fori < R<
then m and Vu are related by
1 (7 1 1 L dr T2
:/ dr‘ (y — x)dm — / Vuda:‘ ,S/ d (T)
T g W(Rd X BT) Rix B, ‘BT‘ B, o T T

Displacement y — z mw-averaged over R? x B,
~ electrostatic field Vu dzxz-averaged over x € By.

R. h. s. is average over radii r ~ r, cf. Proposition 1.

For empirical measure in d = 2:

F~1 and T(r) ~+VInr (which clearly is sublinear),
so that I. h. s. <1 = particle distance.
Hence on scales ~ particle distance, have

displacement = electrostatic field 4+ O(particle distance).
Best possible closeness.



III. Proof of Theorem 4

Most involved ingredient: a large-scale regularity result for =«
expressed in terms of shifts b

Relating a shift b to an average flux increment d(q — q):
Lemma 1 — Lemma 2

Optimal shifts b, at geometrically decreasing radii Ry

Fluxes q;; relate shift increments b, — b4
to flux increments q._1 — q by Lemma 2

Fields Vug; relate fluxes q;. to fields Vu, by Proposition 1

Usage of mean-value property to rewrite
field increments Vu,_1 — Vu, amenable to telescoping

Telescoping to relate shift by to field increment Vu — Vug

Last meter: relate field Vuy to displacement (y — x)dm — by



Most involved ingredient: a large-scale regularity result
for © expressed in terms of shifts b

To every shift vector b € RY we associate the plan my

mp IS push forward of =« wunder (Z,y) = (x+ b,y).
On level of trajectories X = shear of the graph {(¢, X¢)}.

Involved ingredient for Theorem 4 — large-scale regularity result:
For sublinear rate 7', bound on u transmit to @ modulo shift:

Theorem 5 (GHO '21). If 3 sublinear T and a radius r < % with
D(Qr) < 1QIT*(L) and D(B) < |Bg|T*(R) for F < R <

then

inf / 1§ — Z|°dm, < |Bg|T?(R) for 7<R<
beR? JQ(BR)



Relating a shift b to an average flux increment d(q — q):
Lemma 1l — Lemma 2

Recall Lagrangian displacement (y — z)dm =~ Eulerian flux q.
Lemma 1 was established for general A and wu.

Hence we may exchange the roles of x and y.

Both displacement and flux change sign under, so that

/OFdr)/rdq—/Rder(y—x)dw‘ < E(B5).

Assume that 7 is related to original = by a shift b & RY:

7 is push forward of « under (Z,y) = (x + b, vy).
Assume that we control both E(B;) and E(B;y); analogously

,F
/ dr)/ dc’j—/ (@—f)dﬁ’ﬁE(B;).
0 , Rex B,



By the triangle inequality

F
[arl [ aa-@- [ var| < B+ E)B.
0 . Rex By
By the admissibility of =

/ " ar / d(q — @) — u(BY| < (B + B)(Bp).
0 ,

By u(Br) =~ |Br| informally
1
|B7“| By

in the rigorous sense of
Lemma 2. Provided D(B;y) < 7412,

b~

d(q —q) on average inr<r

/Fdr\wb—/ d(q — )| 5 (E+ E)(By).
0 By



Optimal shifts b, at geometrically decreasing radii R,

Fix (sufficiently spaced) geometrically decreasing radii {R;}g=1.... K
connecting macroscopic R ~ L to microscopic Ry = 7.

Theorem 5: Vke{l,--- ,K} 3b, € R% s. t.
T . — b, satisfies B = / |y — x‘zdﬂ'k 5 ‘Bk|T2(Rk)
Q(By)
Convenient to extend these definitions to £ = 0 by setting
Ro:=L, Bg:=Qr, bg=0, mg:=m, Eg:= / ly — x\zdﬂ.
Trivially have the analogous estimate

Eo = W2(\ u) < D(Qr) < |QLIT?(L) = |Bo|T?(Ro).



Fluxes q;.; relate shift increments b, — b;._1
to flux increments q;._1 — ¢ by Lemma 2

For £k =0,.---, K, associate fluxes q; to plans m:

/ﬁ-dqzc = /ﬁ(w) - (y — z)dmy,.
Fork=1, .., K, shift increments =~ averages of flux increments:

1 _

b, — bp_1 & d(qr._1 —qr) on average inr < Ry.

‘Br‘ By
By this informal statement we mean the estimate
2 /Rk 1 T?(Rg—1) , T?(Rg)
= [ dr|(by —br_1) — d(qr—1 — q)| < +—".
Ry, J Bk (0 = by Bl Jg, " 3 Ry_1 Ry,

T his relies on definition of ;. in incremental version of

7 IS push forward of m;_1 under (Z,9) = (z+ b —br._1,v),
to which we apply Lemma 2; estimate of r. h. s. by Theorem 5.



Fields Vu.; relate fluxes ¢, to fields Vu, by Proposition 1

Forany k=1, ---, K, introduce electrostatic fields Vuy,.:

Vuy, rdx| By := distributional Helmholtz projection on By of g | By.

Automatically,

/ qu =/ Vuk,rda: fora. e r< Rk
r By

Claim separately for k=2,--- K and k=1
/ dqr._1 :::/ Vup_q1 pdxr On average inr < Ri, R< Ry_q,
T Br
/ dgo ~ Vudzr on average inr < Ry,
T Br

where we recall

Vudx|Q = distributional Helmholtz projection on Q;, of qqp.



Again, the informal
/ dqr._1 z/ Vup_q gdz ON average inr < Ry, R< Ry_q,
T Br

/ dgo ~ Vudr on average inr < Rj.
T By

are supposed to mean

2 Rp—1 2 B 1 -
_ ﬁ%l dR_—/% dr| (day—1 — Vug_1,pdz)| < 7




Usage of mean-value property to rewrite
field increments Vu;,._1 — Vu;, amenable to telescoping

Crucial identity for telescoping:

1
B /s (Vug_1,r — Vug)do
1 1
=5 (Vu — Vuy, . )dx — (Vu — Vug_1 g)de
r| J By Br| By
11 1
=5 (Vu — Vuy p)dr — —— (Vu — Vuyg_1 g)dx
r| J By BR| BR

Definitions of Vu and Vug_q g
= Vu — Vuy_3 g is (distributionally) divergence-free in Bp.
Hence Vu — Vuy_1 g is (componentwise) harmonic
—= satisfies mean-value property:

1 1
|B | B (VU — V’LLk_l’R)dCB — @ B (VU — V’LLk_l’R)dCU.
Tr r R




Telescoping to relate shift 6, to field increment Vu — Vuy

Claim
1

‘Br‘ By

b ~ (Vu — Vug ,)der on average inr < Ry

K —
1 T?
| / (Vu — VuK,T)da:} < Z (Rk)
r| J B,

2 T
in sense of :/ dr|bx — S
P |B =0 Ry,

r
2

Insert the two flux-field relations

/qu=/ Vug rdx and /qu_lzf Vup_q1 gdx
T B?“ r Br

(all on average inr < R, R < Rj;,_1) into incremental shift-flux relation

1
b, — bp—1 ~ % ‘/B d(qr—1 — 1),
r r

and use mean-field identity to obtain telescoping relation

1 1
‘B ‘ B (Vu — Vuk,r)da: - @ B (Vu - Vuk_LR)dx.
Tr r R

bk — bk—l ~



Telescoping relation holds for k=2,.-.- |, K.
For Kk = 1, appeal instead to field-flux relation

/ dgo ~ Vudr on average inr < Ry,
T By

and to bg = 0 to get

1 _
by ~ (Vu — Vuy,)dx on average inr < Rj.
|B7’| By
Insert this into sum over telescoping relation
1 1
bk — bk—l ~ (VU — V’LLk’T)dx Er— (V’LL — VUk—l,R)dCU
| Br| J B, |Br| JBg

on average in r < Ri, R< Rj_4

to get desired
1
‘BT‘ By

b ~ (Vu — Vug ,)dx on average inr < Rk



Last meter: relate field Vuyg to displacement (y —x)dm — by

Remains to show the displacement-field relation on the “last meter”

7T(Rdlx B Rder(y —x)drm — by & |Blr| 5 Vug rdx on average inr < R
since together with the previously established shift-field relation
b ~ 1 (Vu — Vug ,.)dxr on average inr < Ry
|Br| /B, ’

this implies the desired displacement-field relation

1 1 _ <
(B9 % B Rder(y —x)dr & Bl /s Vudxr on average inr < Ry.
This is informal for the statement in Theorem 4

_ e _
g/_rdr’ dl (y — x)dm — - Vudx| <> m
Tz T(R% x Br) Jrix B, |Br| J B, =0 1%



By definition of 7 = 7,
1 1
(y —x)dr + b =
m(R% X Byr) JRix B, (R x Br) JrixB,
Lemma 1: Lagrangian displacements ~ Eulerian fluxes,
integral of fluxes = integral of fields Vu, := Vug .

,F
/ dr)/ (yf—;z)dfr—/ Vi
0 RIx By By

Need to divide the first integrand contribution by 7x (R x By)
and the second one by |By|.

(G — z)d7.

< E(Br).

This relies on
rlz(RY x B,) — |B/|| £ v/|Br|D(Br) on average inr <7

and

| / (g — z)dr| < / g — Z|d7 < \/IBFIE(B;) on average inr < 7.
RdXBT Q(Br)




