Long range order in atomistic models for solids

Alessandro Giuliani Univ. Roma Tre Mini-course – Lecture 2

GSSI L'Aquila, April 29, 2025 joint work on F. Theil, JEMS 2022

Particles, Fluids and Patterns: Analytical and Computational Challenges

• Mermin's no-crystallization theorem in d = 2

2 The harmonic approximation

Oislocations and grains

We intend to exclude that particles interacting with a stable and tempered 2-body potential in d = 2 can form a crystal associated with a Bravais lattice with basis $\mathbf{a}_1, \mathbf{a}_2$ at $\beta > 0$. Setting:

• Torus Λ_L with sides $L\mathbf{a}_1, L\mathbf{a}_2$, and $N = L^2$

- Pair potential $V_{\Lambda}(\mathbf{Q}^{(N)}) = \sum_{i < j} v_{\Lambda_L}(\mathbf{q}_i \mathbf{q}_j) \equiv \sum_{i < j} v_{ij}$
- Potential $W_{\Lambda}(\mathbf{Q}^{(N)}) = \sum_{i} w_{\Lambda_{L}}(\mathbf{q}_{i}) \equiv \sum_{i} w_{i}$ pinning particles at $\mathbb{L} = \bigcup_{\mathbf{n} \in \mathbb{Z}^{2}} \{n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2}\}$
- Expectation $\langle \cdot \rangle_{\beta,\Lambda_L,\epsilon} \equiv \langle \cdot \rangle$ w.r.t. Gibbs distrib. $\propto d\mathbf{Q}^{(N)} e^{-\beta \Phi_{\Lambda_L}}$ with $\Phi_{\Lambda} = V_{\Lambda} + \epsilon W_{\Lambda}$
- Reciprocal vectors: $\mathbf{G}_1, \mathbf{G}_2$ s.t. $\mathbf{a}_i \cdot \mathbf{G}_j = 2\pi \delta_{i,j}$. Reciprocal lattice: $\mathbb{L}^* := \bigcup_{\mathbf{n} \in \mathbb{Z}^2} \{ n_1 \mathbf{G}_1 + n_2 \mathbf{G}_2 \}$
- First Brillouin zone: $\mathcal{B} := \{\xi_1 \mathbf{G}_1 + \xi_2 \mathbf{G}_2 : \xi_1, \xi_2 \in [0, 1)\}$ (at finite L: $\mathcal{B}_L := \{n_1 \mathbf{G}_1 / L + n_2 \mathbf{G}_2 / L : 0 \le n_1, n_2 < L\}$)
- For $\mathbf{k} \in \mathcal{B}_L$, let $\hat{\rho}_{\Lambda_L,\epsilon}(\mathbf{k}) := \frac{1}{N} \langle \sum_i e^{-i\mathbf{k}\cdot\mathbf{q}_i} \rangle$.

Crystallization criterion:

• $\hat{\rho}_{\epsilon}(\mathbf{G}) := \lim_{L \to \infty} \hat{\rho}_{\Lambda_{L},\epsilon}(\mathbf{G})$ is non-zero and s.t. $\lim_{\epsilon \to 0^{+}} |\hat{\rho}_{\epsilon}(\mathbf{G})| > 0$ for at least one non-zero $\mathbf{G} \in \mathbb{L}^{*}$.

② For any bounded $\gamma : \mathcal{B} \to \mathbb{R}$ and p = 1, 2:

$$\lim_{L\to\infty} L^{-2} \sum_{\substack{\mathbf{k}\in\mathcal{B}_L:\\\mathbf{k}\neq\mathbf{0}}} \gamma(\mathbf{k}) |\hat{\rho}_{\Lambda_L,\epsilon}(\mathbf{k})|^p = 0$$

The two conditions cannot simultaneously hold, as a consequence of Bogoliubov's inequality:

$$\langle \left| \sum_{i} \psi_{i} \right|^{2} \rangle \geq \frac{|\langle \varphi_{i} \nabla \psi_{i} \rangle|^{2}}{\langle \frac{\beta}{2} \sum_{i,j} \Delta v_{ij} |\varphi_{i} - \varphi_{j}|^{2} + \epsilon \beta \sum_{i} \Delta w_{i} |\varphi_{i}|^{2} + \sum_{i} |\nabla \varphi_{i}|^{2} \rangle},$$

valid for any pair of smooth functions ψ, φ from Λ_L to \mathbb{C} (here $\psi_i = \psi(\mathbf{q}_i)$ and $\varphi_i = \varphi(\mathbf{q}_i)$).

If we now choose $\psi(\mathbf{q}) = e^{-i(\mathbf{k}+\mathbf{G})\cdot\mathbf{q}}$ and $\varphi(\mathbf{q}) = \sin(\mathbf{k}\cdot\mathbf{q})$ for two non-zero vectors $\mathbf{G} \in \mathbb{L}^*$ and $\mathbf{k} \in \mathbb{B}_L$, Bogoliubov's inequality reads:

$$\langle \left| \sum_{i} e^{-i(\mathbf{k}+\mathbf{G})\cdot\mathbf{q}_{i}} \right|^{2} \rangle \geq \frac{\frac{|\mathbf{k}+\mathbf{G}|^{2}}{4} \left| \langle \sum_{i} (e^{-i\mathbf{G}\cdot\mathbf{q}_{i}} - e^{-i(\mathbf{G}+2\mathbf{k}_{i})\cdot\mathbf{q}_{i}}) \rangle \right|^{2}}{(A) + (B) + (C)}, \quad \text{where:}$$

$$\begin{aligned} (A) &= \frac{\beta}{2} \sum_{i,j} \langle \Delta v_{i,j} | \sin(\mathbf{k} \cdot \mathbf{q}_i) - \sin(\mathbf{k} \cdot \mathbf{q}_j) |^2 \rangle \leq \frac{\beta}{2} |\mathbf{k}|^2 \sum_{i,j} \langle \Delta v_{i,j} | \mathbf{q}_i - \mathbf{q}_j |^2 \rangle \\ (B) &= \epsilon \beta \sum_i \langle \Delta w_i | \sin(\mathbf{k} \cdot \mathbf{q}_i) |^2 \rangle \leq \epsilon \beta \sum_i \langle \Delta w_i \rangle \\ (C) &= |\mathbf{k}|^2 \sum_i \langle (\cos(\mathbf{k} \cdot \mathbf{q}_i))^2 \rangle \leq N |\mathbf{k}|^2 \end{aligned}$$

Recalling that $\hat{\rho}_{\Lambda_L,\epsilon}(\mathbf{p}) = \frac{1}{N} \sum_i \langle e^{-i\mathbf{p}\cdot\mathbf{q}_i} \rangle$, dividing both sides by N:

$$\frac{1}{N} \langle \big| \sum_{i} e^{-i(\mathbf{k}+\mathbf{G})\cdot\mathbf{q}_{i}} \big|^{2} \rangle \geq \frac{|\mathbf{k}+\mathbf{G}|^{2} \big| \hat{\rho}_{\Lambda_{L},\epsilon}(\mathbf{G}) - \hat{\rho}_{\Lambda_{L},\epsilon}(\mathbf{G}+2\mathbf{k}) \big|^{2}}{C_{1} |\mathbf{k}|^{2} + \epsilon C_{2}}$$

where $C_1 = 4 + 2\frac{\beta}{N}\sum_{i,j}\langle \Delta v_{i,j} | \mathbf{q}_i - \mathbf{q}_j |^2 \rangle$, $C_2 = 4\frac{\beta}{N}\sum_i \langle \Delta w_i \rangle$.

Let $\gamma : \mathcal{B} \to \mathbb{R}$ be a smooth non-negative function supported on the ball of radius $|\mathbf{G} *|/4$ (where $|\mathbf{G}^*|$ is the minimum length of a non-zero vector in \mathbb{L}^*) of total integral 1. If we multiply both sides of the previous inequality by $\gamma(\mathbf{k})$ and sum over $\mathbf{k} \in \mathbb{B}_L \setminus \mathbf{0}$ we get:

$$\begin{split} \frac{1}{L^2} \sum_{\mathbf{k}\neq\mathbf{0}} \gamma(\mathbf{k}) \Big(1 + \frac{1}{N} \sum_{i\neq j} \langle e^{i(\mathbf{G}+\mathbf{k})\cdot(\mathbf{q}_i-\mathbf{q}_j)} \rangle \Big) \geq \\ \geq \frac{1}{L^2} \sum_{\mathbf{k}\neq\mathbf{0}} \gamma(\mathbf{k}) \frac{|\mathbf{k}+\mathbf{G}|^2 |\hat{\rho}_{\Lambda_L,\epsilon}(\mathbf{G}) - \hat{\rho}_{\Lambda_L,\epsilon}(\mathbf{G}+2\mathbf{k})|^2}{C_1 |\mathbf{k}|^2 + \epsilon C_2} \end{split}$$

We now let $L \to \infty$. If hypothesis (2) on $\hat{\rho}_{\Lambda_L,\epsilon}$ holds, then all the terms in the RHS involving $\hat{\rho}_{\Lambda_L,\epsilon}(\mathbf{G} + 2\mathbf{k})$ vanish as $L \to \infty$.

Suppose also that $\exists \alpha_0, \alpha_1, \alpha_2$ independent of ϵ s.t., letting $\Gamma(\mathbf{q}) := \frac{1}{L^2} \sum_{\mathbf{k} \neq \mathbf{0}} \gamma(\mathbf{k}) e^{i(\mathbf{G} + \mathbf{k}) \cdot \mathbf{q}}$:

$$\lim_{L \to \infty} \frac{1}{N} \sum_{i \neq j} \langle \Gamma(\mathbf{q}_i - \mathbf{q}_j) \rangle \leq \alpha_0$$

$$\lim_{L \to \infty} C_1 \leq \alpha_1, \qquad \lim_{L \to \infty} C_2 \leq \alpha_2.$$
(*)

Then

$$1 + \alpha_0 \geq |\hat{\rho}_{\epsilon}(\mathbf{G})|^2 (3|\mathbf{G}^*|/4)^2 \int_{\mathcal{B}} \frac{d\mathbf{k}}{|\mathcal{B}|} \frac{\gamma(\mathbf{k})}{\alpha_1 |\mathbf{k}|^2 + \epsilon \alpha_2}$$

The integral in the RHS diverges $\propto \log(1/\epsilon)$ as $\epsilon \to 0^+$: therefore $\lim_{\epsilon \to 0^+} |\hat{\rho}_{\epsilon}(\mathbf{G})| = 0$, as announced.

It remains to prove assumption (*). For this purpose, consider:

$$Z_{\Lambda_L}(\epsilon,\lambda,\eta,
ho) := rac{1}{N!} \int d\mathbf{q}_1 \cdots d\mathbf{q}_N e^{-eta \Psi_{\Lambda_L}(\mathbf{Q}^{(N)})}, \qquad ext{where:}$$

$$\Psi_{\Lambda_L}(\mathbf{Q}^{(N)}) = (V_{\Lambda_L} + \epsilon W_{\Lambda_L})(\mathbf{Q}^{(N)}) + \lambda \sum_{i < j} \Delta v_{ij} |\mathbf{q}_i - \mathbf{q}_j|^2 + \eta \sum_i \Delta w_i + \rho \sum_{i < j} \Gamma_{ij}$$

 Ψ_{Λ_L} is a stable and tempered potential, so that Fisher's theorem on the existence of the thermodynamic limit holds. Therefore

$$\lim_{N=L^2\to\infty}\frac{1}{N}\log Z_{\Lambda_L}(\epsilon,\lambda,\eta,\rho)=f(\epsilon,\lambda,\eta,\rho)$$

exists, it is finite for $\epsilon,\lambda,\eta,\rho$ sufficiently small and convex in $\lambda,\eta,\rho.$ Note that:

$$\frac{1}{N}\partial_{\lambda}\log Z_{\Lambda_{L}}(\epsilon,\lambda,\eta,\rho)\big|_{\lambda=\eta=\rho=0} = \frac{1}{N}\sum_{i< j}\langle\Delta v_{ij}|\mathbf{q}_{i}-\mathbf{q}_{j}|^{2}\rangle$$
$$\frac{1}{N}\partial_{\eta}\log Z_{\Lambda_{L}}(\epsilon,\lambda,\eta,\rho)\big|_{\lambda=\eta=\rho=0} = \frac{1}{N}\sum_{i}\langle\Delta w_{i}\rangle$$
$$\frac{1}{N}\partial_{\rho}\log Z_{\Lambda_{L}}(\epsilon,\lambda,\eta,\rho)\big|_{\lambda=\eta=\rho=0} = \frac{1}{N}\sum_{i< j}\langle\Gamma(\mathbf{q}_{i}-\mathbf{q}_{j}\rangle$$

By convexity, the (possibly subsequential) limits of these quantities are bounded as $N \to \infty$ (because the derivative of a convex function $f: I \to \mathbb{R}$ in an internal point $x_0 \in I$ can be bounded by $\frac{2 \max_{k \in I} |f(x)|}{\operatorname{dist}(x_0, \partial I)}$)

I Mermin's no-crystallization theorem in d = 2

2 The harmonic approximation

Oislocations and grains

Back to the "real" model

Classical particles interacting via pair potential $v(\mathbf{q}) = \varphi(|\mathbf{q}|)$, with minimum deep and narrow at $\ell_0 \equiv 1$:

$$V(\mathbf{Q}^{(N)}) = \sum_{i < j} \varphi(|\mathbf{q}_i - \mathbf{q}_j|).$$

In 2D $\operatorname{argmin}_{q} H(q) = \text{triangular lattice (Radin 1981, Theil 2006)}.$ In 3D, min expected to be FCC (Flatley-Theil 2015).

Consider, e.g., d = 2. Energy well approximated by

$$H_{nn}(\mathbf{Q}^{(N)}) = \sum_{\langle \xi,\eta
angle \in \mathcal{E}(\mathbf{Q}^{(N)})} arphi(|\mathbf{q}(\xi) - \mathbf{q}(\eta)|)$$

where $\mathcal{E}(\mathbf{Q}^{(N)})$ is the edge set of the Delaunay triangulation $DT(\mathbf{Q}^{(N)})$.

The harmonic approximation

Take $DT(\mathbf{Q}^{(N)})$ to be (a portion \mathbb{T}_L of) the triangular lattice \mathbb{T} . Write $\mathbf{q}(\mathbf{x}_i) = \mathbf{x}_i + \mathbf{u}(\mathbf{x}_i)$ with $\mathbf{x}_i \in \mathbb{T}$. Expanding we get:

$$egin{aligned} &\mathcal{H}_{nn}(\mathbf{Q}^N)\simeq E_0+\mathcal{H}_{harm}(\mathbf{Q}^{(N)}), & ext{with:} \ &\mathcal{H}_{harm}(\mathbf{U}^{(N)})=rac{arphi''(1)}{2}\sum_{\langle \mathbf{x},\mathbf{y}
angle\in\mathbb{T}_l}[(\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y}))\cdot(\mathbf{x}-\mathbf{y})]^2 \end{aligned}$$

A similar formal derivation can be repeated in d = 3, with \mathbb{T} replaced by the FCC lattice \mathbb{F} , a Bravais lattice with basis vectors

$$\mathbf{a}_1 = rac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}, \qquad \mathbf{a}_2 = rac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}, \qquad \mathbf{a}_3 = rac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}$$

Harmonic model: exactly solvable statistical mechanics model with formal Gibbs measure $\propto \prod_{\mathbf{x} \in \mathcal{L}} d\mathbf{u}(\mathbf{x})e^{-\beta H_{harm}(\mathbf{U})}$ where $\mathcal{L} = \mathbb{T}, \mathbb{F}$, depending on whether d = 2, 3.

Positional LRO in the harmonic model, I

Take finite *L* and let \mathcal{L}_L be the discrete torus obtained by taking a portion of \mathcal{L} of sides $L\mathbf{a}_1, \ldots, L\mathbf{a}_d$ with periodic boundary conditions. Let $\langle \cdot \rangle_{\beta,L,\epsilon}$ be the expectation w.r.t. Gibbs distribution

$$\propto \prod_{\mathbf{x}\in\mathcal{L}_L} d\mathbf{u}(\mathbf{x}) e^{-eta(H_{harm}(\mathbf{U}^{(N)})+\epsilon\|\mathbf{U}^{(N)}\|^2)}$$

with $N = L^d$.

We say that system exhibits positional Long Range Order (LRO) if

$$\begin{split} &\lim_{\epsilon \to 0^+} \lim_{L \to \infty} \langle |\mathbf{u}(\mathbf{0})|^2 \rangle_{\beta,L,\epsilon} = c_1(\beta) \\ &\lim_{|\mathbf{x} - \mathbf{y}| \to \infty} \lim_{\epsilon \to 0^+} \lim_{L \to \infty} \langle |\mathbf{u}(\mathbf{x}) - \mathbf{u}(\mathbf{y})|^2 \rangle_{\beta,L,\epsilon} = c_2(\beta) \end{split}$$

with $c_1(\beta), c_2(\beta)$ two positive functions, tending to 0 as $\beta \to \infty$.

Positional LRO in the harmonic model, II

Let us focus, e.g., on the first condition. Let

$$\mathbf{u}(\mathbf{x}) = \frac{1}{L^d} \sum_{\mathbf{k} \in \mathcal{B}_L} e^{-i\mathbf{k} \cdot \mathbf{x}} \hat{\mathbf{u}}(\mathbf{k}) \quad \Leftrightarrow \quad \hat{\mathbf{u}}(\mathbf{k}) = \sum_{\mathbf{x} \in \mathcal{L}_L} e^{i\mathbf{k} \cdot \mathbf{x}} \mathbf{u}(\mathbf{x})$$

so that

$$\begin{aligned} H_{harm}(\mathbf{U}^{N}) &= \frac{1}{L^{d}} \sum_{\mathbf{k} \in \mathcal{B}_{L}} \sum_{i} |\hat{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{a}_{i}|^{2} 2(1 - \cos(\mathbf{k} \cdot \mathbf{a}_{i})) \\ &\equiv \frac{1}{L^{d}} \sum_{\mathbf{k} \in \mathcal{B}_{L}} \hat{u}(-\mathbf{k}) \cdot \hat{A}(\mathbf{k}) \hat{u}(\mathbf{k}), \end{aligned}$$

where $\hat{A}(\mathbf{k}) = \sum_{i} 2(1 - \cos(\mathbf{k} \cdot \mathbf{a}_i)) \mathbf{a}_i \otimes \mathbf{a}_i$, and the sum over *i* runs over $\{1, 2, 3\}$ if d = 2 and over $\{1, \ldots, 6\}$ if d = 3.

[In d = 2, we can choose $\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{a}_2 = \begin{pmatrix} -1/2 \\ \sqrt{3}/2 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} -1/2 \\ -\sqrt{3}/2 \end{pmatrix}$.

In d = 3 we can choose $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ as the basis vectors of \mathbb{F} , and $\mathbf{a}_4 = \mathbf{a}_3 - \mathbf{a}_2, \ \mathbf{a}_5 = \mathbf{a}_1 - \mathbf{a}_3, \ \mathbf{a}_6 = \mathbf{a}_2 - \mathbf{a}_1.$]

Positional LRO in the harmonic model, III

For small
$$\mathbf{k}$$
, $\hat{A}(\mathbf{k}) = \hat{A}_0(\mathbf{k}) + O(|\mathbf{k}|^4)$, where
 $\hat{A}_0(\mathbf{k}) = \sum_i (\mathbf{k} \cdot \mathbf{a}_i)^2 \mathbf{a}_i \otimes \mathbf{a}_i$,

whose eigenvalues are all of order $|\mathbf{k}|^2$ as $\mathbf{k} \to \mathbf{0}$. In d = 2, this is particularly easy to check:

$$\hat{A}_0(\mathbf{k}) = \begin{pmatrix} \frac{9}{8}k_1^2 + \frac{3}{8}k_2^2 & \frac{3}{4}k_1k_2\\ \frac{3}{4}k_1k_2 & \frac{3}{8}k_1^2 + \frac{9}{8}k_2^2 \end{pmatrix} \equiv \frac{3}{8}|\mathbf{k}|^2 + \frac{3}{4}\mathbf{k}\otimes\mathbf{k},$$

whose eigenvalues are $\frac{3}{8}|\mathbf{k}|^2, \frac{9}{8}|\mathbf{k}|^2.$

We thus find:

$$\langle |\mathbf{u}(\mathbf{0})|^2 \rangle_{\beta,L,\epsilon} = \frac{1}{L^d} \sum_{\mathbf{k} \in \mathcal{B}_L} \langle |\mathbf{u}(\mathbf{k})|^2 \rangle_{\beta,L,\epsilon} = \frac{1}{\beta} \frac{1}{L^d} \sum_{\mathbf{k} \in \mathcal{B}_L} \mathsf{Tr} \big[\hat{A}(\mathbf{k}) + \epsilon \mathbb{1} \big]^{-1}$$

Taking $L \rightarrow \infty$ we find:

$$\lim_{L \to \infty} \langle |\mathbf{u}(\mathbf{0})|^2 \rangle_{\beta, L, \epsilon} = \frac{1}{\beta} \int_{\mathcal{B}} \frac{d\mathbf{k}}{|\mathcal{B}|} \mathrm{Tr} \big[\hat{A}(\mathbf{k}) + \epsilon \mathbb{1} \big]^{-1}$$

which is:

- positive and of order $1/\beta$ uniformly in ϵ as $\epsilon \to 0^+$ if d = 3
- positive and $\sim ({\rm const.}) rac{1}{eta} \log(\epsilon^{-1})$ as $\epsilon
 ightarrow 0^+$ if d=2

In other words, the harmonic model predicts positional LRO in d = 3 and no positional LRO in d = 2.

Orientational LRO in the harmonic model

The same computation shows that:

$$\begin{split} \lim_{L \to \infty} \langle |\mathbf{u}(\mathbf{0}) - \mathbf{u}(\mathbf{a}_i)|^2 \rangle_{\beta, L, \epsilon} &= \frac{1}{\beta} \lim_{L \to \infty} |1 - e^{-i\mathbf{k} \cdot \mathbf{a}_i}|^2 \langle |\hat{\mathbf{u}}(\mathbf{k})|^2 \rangle_{\beta, L, \epsilon} \\ &= \frac{1}{\beta} \int_{\mathcal{B}} \frac{d\mathbf{k}}{|\mathcal{B}|} 2(1 - \cos(\mathbf{k} \cdot \mathbf{a}_i)) \operatorname{Tr} \big[\hat{A}(\mathbf{k}) + \epsilon \mathbb{1} \big]^{-1} \end{split}$$

which is positive and of order $1/\beta$ uniformly in ϵ as $\epsilon \to 0^+$ both in d = 2 and in d = 3.

Big limitation: the harmonic model does not account for **dislocation defects**. The predictions of the harmonic approx. can be generalized to non-harmonic models, accounting for certain lattice defects (missing atoms), see Heydenreich-Merkl-Rolles, Electron. J. Prob. 2014. However, essentially no results for models allowing the presence of dislocations.

1 Mermin's no-crystallization theorem in d = 2

2 The harmonic approximation

Oislocations and grains

Dislocations and the KTHNY model

Edge and screw dislocations

In their famous paper on XY, Kosterlitz-Thouless 1973 studied also 2D crystals; they proposed to add a pair interaction among dislocations with Burgers vectors $\{b_i\}$ located at $\{r_i\}$ of the form (letting $r_{ij} = r_i - r_j$):

$$\mathcal{H}_{dis}(b) = \mathcal{K}\sum_{i < j} \left[b_i \cdot b_j \log |r_{ij}| - rac{(b_i \cdot r_{ij})(b_j \cdot r_{ij})}{|r_{ij}|^2} + rac{1}{2}b_i \cdot b_j
ight]$$

In addition to this interaction energy, dislocations come with finite self-energy. Similar formula in 3D with $\log |r_{ij}| \rightsquigarrow 1/|r_{ij}|$.

KT model investigated further in Nelson-Halperin, Young 1979.

Predictions in d = 2:

- $T < T_m$: algebraic decay of positional correlations & orientational LRO
- $T_m < T < T_i$: exponential decay of positional correlations & algebraic decay of orientational correlations
- $T > T_i$: exponential decay of all correlations

Model intrinsically mesoscopic, BUT unclear whether it supports grains

Typical configurations consist of grains with 'constant' orientations θ_i

On the grain boundaries: finite density of defects.

A mesoscopic model of grains

Grains have finite surface tension. Read-Shockley law:

$$au(\Delta heta) \underset{\Delta heta
ightarrow 0}{\sim} \Delta heta (A - \log(\Delta heta))$$

Effective model:
$$E(\theta) = \sum_{i < j} v(\theta_i - \theta_j)$$

with $v(\theta) \ge 0 e v(\theta) \sim -\theta \log \theta$ per $\theta \to 0^+$. Notwithstanding this singular behavior, MW holds (loffe-Schlosman-Velenik 2005) \Rightarrow this suggests no orientational LRO in d = 2.

How to explain this contradiction?

Vague answer: neighboring grains never display arbitrarily small $\Delta \theta_{ij}$: these are pinned to discrete set of magic angles \Rightarrow at mesoscopic level the system behaves like a clock model rather than like $XY \Rightarrow$ orientational LRO possible in 2D

It would be desirable to identify a treatable microscopic model of a crystal, supporting dislocations and grains, in which prove or disprove existence of 2D orientational LRO (as well as characterize the typical low T configurations: do they correspond to grains with discrete relative orientations?)

The Ariza-Ortiz model is a good candidate: it is a sort of vectorial analogue of the Villain model. Our main results on LRO concern the 'easy' case of d = 3, which we started to study as a preparation to d = 2. We will discuss it tomorrow.